Reconfigurable Rateless Codes

We propose novel reconfigurable rateless codes, that are capable of not only varying the block length but also adaptively modify their encoding strategy by incrementally adjusting their degree distribution according to the prevalent channel conditions without the availability of the channel state information at the transmitter. In particular, we characterize a reconfigurable rateless code designed for the transmission of 9,500 information bits that achieves a performance, which is approximately 1 dB away from the discrete-input continuous-output memoryless channel's (DCMC) capacity over a diverse range of channel signal-to-noise (SNR) ratios.

[1]  David J. C. MacKay,et al.  Good Error-Correcting Codes Based on Very Sparse Matrices , 1997, IEEE Trans. Inf. Theory.

[2]  Wei Zhong,et al.  Approaching Shannon performance by iterative decoding of linear codes with low-density generator matrix , 2003, IEEE Communications Letters.

[3]  Joachim Hagenauer,et al.  The turbo-fountain , 2006, Eur. Trans. Telecommun..

[4]  Keum-Chan Whang,et al.  Efficient Puncturing Method for Rate-Compatible Low-Density Parity-Check Codes , 2007, IEEE Transactions on Wireless Communications.

[5]  A. Glavieux,et al.  Near Shannon limit error-correcting coding and decoding: Turbo-codes. 1 , 1993, Proceedings of ICC '93 - IEEE International Conference on Communications.

[6]  Lie-Liang Yang,et al.  Serially Concatenated Luby Transform Coding and Bit-Interleaved Coded Modulation Using Iteratlive Decoding for the Wireless Internet , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[7]  Lajos Hanzo,et al.  Performance of the turbo hybrid automatic repeat request system type II , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[8]  Tiffany Jing Li,et al.  Rate-compatible Low Density Parity Check Codes for Capacity-approaching ARQ Schemes in Packet Data Communications , 2002, Communications, Internet, and Information Technology.

[9]  Emina Soljanin,et al.  Punctured vs Rateless Codes for Hybrid ARQ , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Punta del Este.

[10]  Rüdiger L. Urbanke,et al.  Design of capacity-approaching irregular low-density parity-check codes , 2001, IEEE Trans. Inf. Theory.

[11]  Lie-Liang Yang,et al.  Amalgamated Generalized Low Density Parity Check and Luby Transform Codes for the Wireless Internet , 2007, 2007 IEEE 65th Vehicular Technology Conference - VTC2007-Spring.

[12]  Stephan ten Brink,et al.  Design of repeat-accumulate codes for iterative detection and decoding , 2003, IEEE Trans. Signal Process..

[13]  Omid Etesami,et al.  Raptor codes on binary memoryless symmetric channels , 2006, IEEE Transactions on Information Theory.

[14]  Emina Soljanin,et al.  Incremental Redundancy Cooperative Coding for Wireless Networks: Cooperative Diversity, Coding, and Transmission Energy Gains , 2006, IEEE Transactions on Information Theory.

[15]  Yongyi Mao,et al.  Rateless coding over fading channels , 2006, IEEE Communications Letters.

[16]  Yongyi Mao,et al.  Rateless Coding and Relay Networks , 2007, IEEE Signal Processing Magazine.

[17]  Zixiang Xiong,et al.  Distributed joint source-channel coding of video using Raptor codes , 2005, Data Compression Conference.

[18]  Jonathan S. Yedidia,et al.  Rateless codes on noisy channels , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[20]  Michael Luby,et al.  LT codes , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..