Tensile behaviors of pure copper with different fraction of nonequilibrium grain boundaries

[1]  R. Fu,et al.  Grain refinement and nanostructure formation in pure copper during cryogenic friction stir processing , 2017 .

[2]  G. Sha,et al.  Grain boundary stability governs hardening and softening in extremely fine nanograined metals , 2017, Science.

[3]  Wei Chen,et al.  Mechanically-induced grain coarsening in gradient nano-grained copper , 2017 .

[4]  R. Fu,et al.  Enhanced mechanical properties of pure copper with a mixture microstructure of nanocrystalline and ultrafine grains , 2016 .

[5]  N. Tao,et al.  Microstructural evolutions and stability of gradient nano-grained copper under tensile tests and subsequent storage , 2015 .

[6]  R. Fu,et al.  Modification of the Hall–Petch equation for friction-stir-processing microstructures of high-nitrogen steel , 2015 .

[7]  Xiaohong Li,et al.  High tensile ductility and strength in dual-morphology hierarchical nanolamellar-structured TiZr alloys , 2014 .

[8]  Fucheng Zhang,et al.  Microstructure evolution and mechanical properties of nanocrystalline zirconium processed by surface circulation rolling treatment , 2013 .

[9]  R. Valiev,et al.  Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomena , 2012, 1203.6496.

[10]  Zhibo Zhang,et al.  High strength and ductility in multimodal-structured Zr , 2012 .

[11]  Y. Estrin,et al.  Plasticity and Grain Boundary Diffusion at Small Grain Sizes , 2010 .

[12]  Y. Estrin,et al.  Percolating network of ultrafast transport channels in severely deformed nanocrystalline metals , 2009 .

[13]  K. Lu,et al.  Effect of thermal annealing on mechanical properties of a nanostructured copper prepared by means of dynamic plastic deformation , 2008 .

[14]  D. Gianola,et al.  In situ TEM observations of fast grain-boundary motion in stressed nanocrystalline aluminum films , 2008 .

[15]  K. Lu,et al.  Mechanical properties and rolling behaviors of nano-grained copper with embedded nano-twin bundles , 2008 .

[16]  P. Ferreira,et al.  What is behind the inverse Hall–Petch effect in nanocrystalline materials? , 2007 .

[17]  K. A. Padmanabhan,et al.  Inverse Hall–Petch effect and grain boundary sliding controlled flow in nanocrystalline materials , 2007 .

[18]  C. Schuh,et al.  Tailoring and patterning the grain size of nanocrystalline alloys , 2007 .

[19]  K. Lu,et al.  Hardness and strain rate sensitivity of nanocrystalline Cu , 2006 .

[20]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[21]  Hongsheng Gao,et al.  High-pressure torsion-induced grain growth in electrodeposited nanocrystalline Ni , 2006 .

[22]  Y. Estrin,et al.  Microstructure of severely deformed metals determined by X-ray peak profile analysis , 2004 .

[23]  A. Sergueeva,et al.  The effect of annealing on tensile deformation behavior of nanostructured SPD titanium , 2003 .

[24]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[25]  R. Scattergood,et al.  Tensile elongation (110%) observed in ultrafine-grained Zn at room temperature , 2002 .

[26]  K. Lu,et al.  COLD ROLLING OF BULK NANOCRYSTALLINE COPPER , 2001 .

[27]  Aashish Rohatgi,et al.  A METALLOGRAPHIC AND QUANTITATIVE ANALYSIS OF THE INFLUENCE OF STACKING FAULT ENERGY ON SHOCK- HARDENING IN Cu AND Cu-Al ALLOYS , 2001 .

[28]  R. Valiev,et al.  Bulk nanostructured materials from severe plastic deformation , 2000 .

[29]  M. Mabuchi,et al.  Low temperature superplasticity of AZ91 magnesium alloy with non-equilibrium grain boundaries , 1999 .

[30]  M. Zehetbauer,et al.  Stage IV work hardening in cell forming materials, part II: A new mechanism , 1996 .

[31]  R. Valiev,et al.  Models of the defect structure and analysis of the mechanical behavior of nanocrystals , 1995 .

[32]  Ruslan Z. Valiev,et al.  Deformation behaviour of ultra-fine-grained copper , 1994 .