INSTITUTE OF PHYSICS PUBLISHING PHYSICS IN MEDICINE AND BIOLOGY

The terahertz region of the electromagnetic spectrum spans the frequency range between the mid-infrared and the millimetre/microwave. This region has not been exploited fully to date owing to the limited number of suitable (in particular, coherent) radiation sources and detectors. Recent demonstrations, using pulsed near-infrared femtosecond laser systems, of the viability of THz medical imaging and spectroscopy have sparked international interest; yet much research still needs to be undertaken to optimize both the power and bandwidth in such THz systems. In this paper, we review how femtosecond near-infrared laser pulses can be converted into broad band THz radiation using semiconductor crystals, and discuss in depth the optimization of one specific generation mechanism based on ultra-fast transport of electrons and holes at a semiconductor surface. We also outline a few of the opportunities for a technology that can address a diverse range of challenges spanning the physical and biological sciences, and note the continuing need for the development of solid state, continuous wave, THz sources which operate at room temperature.

[1]  M. Cardona,et al.  Fundamentals of semiconductors : physics and materials properties , 1997 .

[2]  R. Schouten,et al.  Design and performance of a THz emission and detection setup based on a semi-insulating GaAs emitter , 2002 .

[3]  Kurz,et al.  Subpicosecond carrier transport in GaAs surface-space-charge fields. , 1993, Physical review. B, Condensed matter.

[4]  Kurz,et al.  THz electromagnetic emission by coherent infrared-active phonons. , 1996, Physical review. B, Condensed matter.

[5]  G. Strasser,et al.  Coherent plasmons in n-doped GaAs , 1998 .

[6]  M. Nuss,et al.  Imaging with terahertz waves. , 1995, Optics letters.

[7]  J. M. Chamberlain,et al.  New directions in terahertz technology , 1997 .

[8]  H. Matsuzawa,et al.  Focusing characteristics of a modified double-layered high-Tc superconducting tube (supertron) for charged particle beams , 2001 .

[9]  Hu,et al.  Terahertz radiation induced by subband-gap femtosecond optical excitation of GaAs. , 1991, Physical review letters.

[10]  Shun Lien Chuang,et al.  Short terahertz pulses from semiconductor surfaces: The importance of bulk difference‐frequency mixing , 1993 .

[11]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[12]  Xiang Zhang,et al.  Generation of femtosecond electromagnetic pulses from semiconductor surfaces , 1990 .

[13]  C. Burrus,et al.  Millimeter and Submillimeter Wave Spectroscopy , 1956 .

[14]  A. Davies,et al.  Theory of magnetic-field enhancement of surface-field terahertz emission , 2002 .

[15]  M. Tani,et al.  Use of the organic crystal DAST for terahertz beam applications. , 2000, Optics letters.

[16]  David A. Ritchie,et al.  Low-threshold terahertz quantum-cascade lasers , 2002 .

[17]  K. Cheung,et al.  Coherent time-domain far-infrared spectroscopy , 1985 .

[18]  Xiang Zhang,et al.  Terahertz imaging via electrooptic effect , 1999 .

[19]  Edmund H. Linfield,et al.  Simulation of terahertz generation at semiconductor surfaces , 2002 .

[20]  Nobuhiko Sarukura,et al.  High average-power THz radiation from femtosecond laser-irradiated InAs in a magnetic field and its elliptical polarization characteristics , 1998 .

[21]  R Wallenstein,et al.  Origin of magnetic field enhancement in the generation of terahertz radiation from semiconductor surfaces. , 2001, Optics letters.

[22]  G. Cho,et al.  Time-domain transillumination of biological tissues with terahertz pulses. , 2000, Optics letters.

[23]  H. Takahashi,et al.  Far-infrared properties of DAST. , 2000, Optics letters.

[24]  P. Y. Yu,et al.  Fundamentals of Semiconductors , 1995 .

[25]  Rene Beigang,et al.  Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces , 2000 .

[26]  D. Auston Picosecond optoelectronic switching and gating in silicon , 1975 .

[27]  M. Tani,et al.  Temperature dependence of terahertz radiation from n-type InSb and n-type InAs surfaces , 2000 .

[28]  Xiang Zhang,et al.  Optoelectronic measurement of semiconductor surfaces and interfaces with femtosecond optics , 1992 .

[29]  G. Haddad,et al.  Recent advances in the performance of InP Gunn devices and GaAs TUNNETT diodes for the 100-300-GHz frequency range and above , 2000 .

[30]  Eicke R. Weber,et al.  The advanced unified defect model for Schottky barrier formation , 1988 .

[31]  D. Sivco,et al.  Mid-infrared quantum cascade lasers , 1994, Proceedings of LEOS'94.

[32]  Nobuhiko Sarukura,et al.  Spectrum control of THz radiation from InAs in a magnetic field by duration and frequency chirp of the excitation pulses , 1999 .

[33]  X. Zhang,et al.  Broadband detection capability of ZnTe electro-optic field detectors , 1996 .

[34]  Jagdeep Shah,et al.  Femtosecond Charge Transport in Polar Semiconductors , 1999 .

[35]  D. Grischkowsky Optoelectronic characterization of transmission lines and waveguides by terahertz time-domain spectroscopy , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[36]  G. Grüner Millimeter and Submillimeter Wave Spectroscopy of Solids , 1998 .

[37]  K. Unterrainer,et al.  Terahertz emission from GaAs and InAs in a magnetic field , 2001 .

[38]  Federico Capasso,et al.  Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths , 2001 .

[39]  Edmund H. Linfield,et al.  Effects of magnetic field and optical fluence on terahertz emission in gallium arsenide , 2001 .

[40]  X. Zhang,et al.  Determination of ratios between nonlinear-optical coefficients by using subpicosecond optical rectification , 1993 .

[41]  Thomas W. Crowe,et al.  Progress toward solid-state local oscillators at 1 THz , 1996 .

[42]  Edmund H. Linfield,et al.  Enhanced coherent terahertz emission from indium arsenide in the presence of a magnetic field , 2000 .

[43]  Xiang Zhang,et al.  Terahertz optical rectification from 〈110〉 zinc‐blende crystals , 1994 .

[44]  Maya R. Gupta,et al.  Recent advances in terahertz imaging , 1999 .