Design and fabrication of silicon nanowires towards efficient solar cells

The recent rise of semiconductor nanowires opens new opportunities for realizing high efficiency photovoltaic devices at low cost due to the unique one-dimensional structure with remarkable electrical and optical properties. Particularly, silicon nanowires (SiNWs), as one of the most earth-abundant materials, have been investigated worldwide to develop cost-effective solar cells. Great efforts have been devoted to fabricating ordered/disordered SiNWs using cost-effective approaches and achieving optimized structural parameters, such as array periodicity, nanowire morphology, length and diameter. Systematic theoretical investigations along with experimental studies on optical and electrical properties of SiNWs have been carried out. These efforts have led to obtaining remarkable improvement of the power conversion efficiency of SiNW solar cells from 10% in the last few years. However, till now, the power conversion efficiency of these SiNW solar cells is far from satisfactory for any commercial applications compared with the traditional bulk silicon solar cells. Further development of SiNW solar cells requires better understanding of the optical and electrical properties of the nanowire solar cells. Improvement in fabrication of high quality nanowires in a controlled fashion also plays a significant role in nanowire solar cell design and fabrication. To guide future development of SiNW solar cells, the recent work on SiNWs is reviewed. Following that, various techniques aiming to achieve high quality nanowires at low cost are introduced. Both bottom-up and top-down techniques are discussed. Then, electrical properties and various types of solar cells based on SiNWs are discussed. Finally challenges and prospects of SiNW solar cells are presented.

[1]  U. Rau,et al.  Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. , 2011, Optics express.

[2]  D. Choi,et al.  13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode , 2015, Scientific Reports.

[3]  W. Shen,et al.  Controllable light-induced conic structures in silicon nanowire arrays by metal-assisted chemical etching , 2014, Nanotechnology.

[4]  T. Subramani,et al.  Low-Pressure-Assisted Coating Method To Improve Interface between PEDOT:PSS and Silicon Nanotips for High-Efficiency Organic/Inorganic Hybrid Solar Cells via Solution Process. , 2016, ACS applied materials & interfaces.

[5]  Han-Don Um,et al.  The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector. , 2012, Optics express.

[6]  Jin-Young Jung,et al.  Upgraded Silicon Nanowires by Metal‐Assisted Etching of Metallurgical Silicon: A New Route to Nanostructured Solar‐Grade Silicon , 2013, Advanced materials.

[7]  Selective growth of Si nanowire arrays via galvanic displacement processes in water-in-oil microemulsions. , 2005, Journal of the American Chemical Society.

[8]  Rusli,et al.  High-efficiency si/polymer hybrid solar cells based on synergistic surface texturing of Si nanowires on pyramids. , 2012, Small.

[9]  R. Annan Photovoltaics. , 1985, Science.

[10]  Fumin Wang,et al.  Highly Efficient Dye-sensitized Solar Cells Based on Single Crystalline TiO2 Nanorod Film , 2005 .

[11]  G. Tranell,et al.  Processes for Upgrading Metallurgical Grade Silicon to Solar Grade Silicon , 2012 .

[12]  A. Ayón,et al.  Ultrathin, flexible organic-inorganic hybrid solar cells based on silicon nanowires and PEDOT:PSS. , 2014, ACS applied materials & interfaces.

[13]  Wei Li,et al.  Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. , 2012, Nano letters.

[14]  J. Song,et al.  Air‐Bridged Ohmic Contact on Vertically Aligned Si Nanowire Arrays: Application to Molecule Sensors , 2012, Advanced materials.

[15]  M. Thring World Energy Outlook , 1977 .

[16]  Bram Hoex,et al.  High-rate plasma-deposited SiO2 films for surface passivation of crystalline silicon , 2006 .

[17]  C. Grant Willson,et al.  Nanoimprint Lithography Materials Development for Semiconductor Device Fabrication , 2009 .

[18]  Z. Liao,et al.  Photovoltaic effect and charge storage in single ZnO nanowires , 2008 .

[19]  George C. Schatz,et al.  Journal of Physical Chemistry B: Editorial , 2006 .

[20]  Yi Cui,et al.  High‐Efficiency Amorphous Silicon Solar Cell on a Periodic Nanocone Back Reflector , 2012 .

[21]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[22]  R. Maboudian,et al.  Silicon carbide coated silicon nanowires as robust electrode material for aqueous micro-supercapacitor , 2012 .

[23]  Xiao Wei Sun,et al.  Broadband absorption enhancement in randomly positioned silicon nanowire arrays for solar cell applications. , 2011, Optics letters.

[24]  I. Ial,et al.  Nature Communications , 2010, Nature Cell Biology.

[25]  Nahed Dokhane,et al.  Solar Energy Materials and Solar Cells , 2017 .

[26]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[27]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[28]  G. Stefanovich,et al.  Photoluminescence response of colloidal quantum dots on VO2 film across metal to insulator transition , 2014, Nanoscale Research Letters.

[29]  H. Haick,et al.  Oxide-free hybrid silicon nanowires: From fundamentals to applied nanotechnology , 2013 .

[30]  Xiao Wei Sun,et al.  Si nanopillar array optimization on Si thin films for solar energy harvesting , 2009 .

[31]  S. Kodambaka,et al.  Kinetics of Individual Nucleation Events Observed in Nanoscale Vapor-Liquid-Solid Growth , 2008, Science.

[32]  Yi Cui,et al.  Controlled Growth and Structures of Molecular-Scale Silicon Nanowires , 2004 .

[33]  Rusli,et al.  Design guidelines for slanting silicon nanowire arrays for solar cell application , 2013 .

[34]  W. He,et al.  Towards stable silicon nanoarray hybrid solar cells , 2014, Scientific Reports.

[35]  L. Christophorou Science , 2018, Emerging Dynamics: Science, Energy, Society and Values.

[36]  Xiuling Li,et al.  Metal-assisted chemical etching in HF/H2O2 produces porous silicon , 2000 .

[37]  U. Gösele,et al.  On the formation of Si nanowires by molecular beam epitaxy , 2006 .

[38]  O. Urakawa,et al.  Small - , 2007 .

[39]  Maxwell J. Crossley,et al.  Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion , 2012 .

[40]  Jiahao Zhao,et al.  Silver catalysis in the fabrication of silicon nanowire arrays , 2006 .

[41]  R. Street,et al.  Analytic model for diffuse reflectivity of silicon nanowire mats. , 2009, Nano letters.

[42]  W. Shen,et al.  Realization of high performance silicon nanowire based solar cells with large size , 2013, Nanotechnology.

[43]  Xiaolin Zheng,et al.  Hybrid Si microwire and planar solar cells: passivation and characterization. , 2011, Nano letters.

[44]  Zhiyong Fan,et al.  Low‐Cost, Flexible, and Self‐Cleaning 3D Nanocone Anti‐Reflection Films for High‐Efficiency Photovoltaics , 2014, Advanced materials.

[45]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[46]  M. V. Rao,et al.  Correlation between the performance and microstructure of Ti/Al/Ti/Au Ohmic contacts to p-type silicon nanowires , 2011, Nanotechnology.

[47]  Peter Sutter,et al.  Sub-50-nm self-assembled nanotextures for enhanced broadband antireflection in silicon solar cells , 2015, Nature Communications.

[48]  Wei Wang,et al.  Journal of Materials Chemistry A-3-15148-2015 , 2015 .

[49]  S. Kodambaka,et al.  Formation of Compositionally Abrupt Axial Heterojunctions in Silicon-Germanium Nanowires , 2009, Science.

[50]  Zongfu Yu,et al.  Semiconductor nanowire optical antenna solar absorbers. , 2010, Nano letters.

[51]  Jordi Arbiol,et al.  Influence of Cu as a catalyst on the properties of silicon nanowires synthesized by the vapour–solid–solid mechanism , 2007 .

[52]  M. Dutta,et al.  Low-temperature UV ozone-treated high efficiency radial p-n junction solar cells: N-Si NW arrays embedded in a p-Si matrix , 2015 .

[53]  Kelly P. Knutsen,et al.  Multiple exciton generation in colloidal silicon nanocrystals. , 2007, Nano letters.

[54]  David R. Clarke,et al.  Annual review of materials research , 2001 .

[55]  Yi Cui,et al.  Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching , 2008 .

[56]  H. Scheel Journal of Crystal Growth 42 (1977) 301-308 , 2011 .

[57]  Rakesh A. Afre,et al.  Silicon nanowire array/polymer hybrid solar cell incorporating carbon nanotubes , 2009 .

[58]  Ning Han,et al.  Rational design of inverted nanopencil arrays for cost-effective, broadband, and omnidirectional light harvesting. , 2014, ACS nano.

[59]  X. W. Sun,et al.  Bandgap-Engineered Ga-Rich GaZnO Thin Films for UV Transparent Electronics , 2009, IEEE Transactions on Electron Devices.

[60]  L Holland Progress in Surface Science Vol 1 , 1973 .

[61]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[62]  Hwan Chul Jeon,et al.  Hierarchically Ordered Arrays of Noncircular Silicon Nanowires Featured by Holographic Lithography Toward a High‐Fidelity Sensing Platform , 2012 .

[63]  M. Reuter,et al.  Growth system, structure, and doping of aluminum-seeded epitaxial silicon nanowires. , 2009, Nano letters.

[64]  Boris E. Burakov,et al.  Advanced Materials , 2019, Springer Proceedings in Physics.

[65]  Ching-ping Wong,et al.  Effect of catalyst shape and etchant composition on etching direction in metal-assisted chemical etching of silicon to fabricate 3D nanostructures. , 2009, ACS nano.

[66]  Paul Steinvurzel,et al.  Multicolored vertical silicon nanowires. , 2011, Nano letters.

[67]  Antonio Luque,et al.  Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells , 2005 .

[68]  D. He,et al.  Radial junction Si micro/nano-wire array photovoltaics: Recent progress from theoretical investigation to experimental realization , 2014 .

[69]  O. Hildreth,et al.  Vapor Phase Metal‐Assisted Chemical Etching of Silicon , 2013 .

[70]  S. T. Lee,et al.  Fabrication of Single‐Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles , 2006 .

[71]  Gang Chen,et al.  Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. , 2007, Nano letters.

[72]  Nathan S. Lewis,et al.  Growth of vertically aligned Si wire arrays over large areas (>1 cm^2) with Au and Cu catalysts , 2007 .

[73]  A. Gawlik,et al.  Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters. , 2009, Nano letters.

[74]  Charles M. Lieber,et al.  Diameter-controlled synthesis of single-crystal silicon nanowires , 2001 .

[75]  Yunjie Yan,et al.  Synthesis of Large‐Area Silicon Nanowire Arrays via Self‐Assembling Nanoelectrochemistry , 2002 .

[76]  Ning-Bew Wong,et al.  Ordered silicon nanowire arrays via nanosphere lithography and metal-induced etching , 2007 .

[77]  K. Johnston,et al.  Control of thickness and orientation of solution-grown silicon nanowires , 2000, Science.

[78]  Jianning Ding,et al.  Ultrathin interdigitated back-contacted silicon solar cell with light-trapping structures of Si nanowire arrays , 2015 .

[79]  Dinesh Kumar,et al.  Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics , 2014, Nanotechnology.

[80]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[81]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[82]  Yu Hang Leung,et al.  Vertically Aligned ZnO Nanorod Arrays Sentisized with Gold Nanoparticles for Schottky Barrier Photovoltaic Cells , 2009 .

[83]  Xing Huang,et al.  Metal-catalyzed electroless etching of silicon in aerated HF/H2O vapor for facile fabrication of silicon nanostructures. , 2014, Nano letters.

[84]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[85]  S. Fan,et al.  Si nanowires synthesized with Cu catalyst , 2007 .

[86]  Matthew R. Shaner,et al.  Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation , 2014, Science.

[87]  Zach DeVito,et al.  Opt , 2017 .

[88]  M. Beard,et al.  Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. , 2005, Nano letters.

[89]  Jimmy Xu,et al.  Enhancement of Radiative Recombination in Silicon via Phonon Localization and Selection‐Rule Breaking , 2006 .

[90]  Rusli,et al.  Highly efficient Si-nanorods/organic hybrid core-sheath heterojunction solar cells , 2011 .

[91]  Kui‐Qing Peng,et al.  Silicon nanowire array photoelectrochemical solar cells , 2008 .

[92]  T. Alford,et al.  Fabrication of periodic silicon nanopillars in a two-dimensional hexagonal array with enhanced control on structural dimension and period. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[93]  Gang Chen,et al.  Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells. , 2010, Nano letters.

[94]  S. Kodambaka,et al.  Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. , 2006, Physical review letters.

[95]  K. Dick,et al.  A comparative study of the effect of gold seed particle preparation method on nanowire growth , 2010 .

[96]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[97]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[98]  Peidong Yang,et al.  Light trapping in silicon nanowire solar cells. , 2010, Nano letters.

[99]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[100]  Thomas J. Kempa,et al.  Design of nanowire optical cavities as efficient photon absorbers. , 2014, ACS nano.

[101]  Yi Jia,et al.  Double-walled carbon nanotube solar cells. , 2007, Nano letters.

[102]  C. Lee,et al.  Growth Direction and Cross‐Sectional Study of Silicon Nanowires , 2003 .

[103]  Hao-Chung Kuo,et al.  Enhanced conversion efficiency of a crystalline silicon solar cell with frustum nanorod arrays , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[104]  P. Krogstrup,et al.  Single-nanowire solar cells beyond the Shockley-Queisser limit , 2013, 1301.1068.

[105]  Tomohiro Shimizu,et al.  Synthesis of Vertical High‐Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template , 2007 .

[106]  Zhiyong Fan,et al.  Rational geometrical design of multi-diameter nanopillars for efficient light harvesting , 2013 .

[107]  Colloidal Cu(InxGa1−x)Se2 nanocrystals for all-inorganic nano-heterojunction solar cells , 2013 .

[108]  Zhipeng Huang,et al.  Fabrication of Silicon Nanowire Arrays with Controlled Diameter, Length, and Density , 2007 .

[109]  Dim-Lee Kwong,et al.  Design guidelines of periodic Si nanowire arrays for solar cell application , 2009 .

[110]  Growth of Si whiskers by MBE: Mechanism and peculiarities , 2007 .

[111]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[112]  Kai Zhu,et al.  Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. , 2007, Nano letters.

[113]  Shufeng Bai,et al.  Wafer-scale patterning of sub-40 nm diameter and high aspect ratio (>50:1) silicon pillar arrays by nanoimprint and etching , 2008, Nanotechnology.

[114]  Wei Wang,et al.  Nanorainforest solar cells based on multi-junction hierarchical p-Si/n-CdS/n-ZnO nanoheterostructures. , 2012, Nanoscale.

[115]  Ning Han,et al.  Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping , 2013 .

[116]  S. Mohammad Substrate-mediated diffusion-induced growth of single-crystal nanowires. , 2009, The Journal of chemical physics.

[117]  C. Pan,et al.  Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. , 2007, Nature nanotechnology.

[118]  Caroline A. Ross,et al.  Densely Packed Arrays of Ultra‐High‐Aspect‐Ratio Silicon Nanowires Fabricated using Block‐Copolymer Lithography and Metal‐Assisted Etching , 2009 .

[119]  E. Hall,et al.  The nature of biotechnology. , 1988, Journal of biomedical engineering.

[120]  Shui-Tong Lee,et al.  SiO2-enhanced synthesis of Si nanowires by laser ablation , 1998 .

[121]  Debajyoti Das,et al.  Generally Applicable Self-Masked Dry Etching Technique for Nanotip Array Fabrication , 2004 .

[122]  M. Chou,et al.  Quantum confinement and electronic properties of silicon nanowires. , 2004, Physical review letters.

[123]  A. Menzel,et al.  Field-effect passivation on silicon nanowire solar cells , 2015, Nano Research.

[124]  M. Ottmar Advanced Energy Materials to Expand in 2011 , 2010 .

[125]  Shui-Tong Lee,et al.  Transmission electron microscopy evidence of the defect structure in Si nanowires synthesized by laser ablation , 1998 .

[126]  Hongzhou Zhang,et al.  Dependence of the silicon nanowire diameter on ambient pressure , 1998 .

[127]  Patrice Gergaud,et al.  Catalyst preparation for CMOS-compatible silicon nanowire synthesis. , 2009, Nature nanotechnology.

[128]  A. Lu,et al.  Unique electronic band structures of hydrogen-terminated silicon nanowires , 2007, Nanotechnology.

[129]  Pallab Bhattacharya,et al.  Statement of intent for Journal of Physics D: Applied Physics , 2009 .

[130]  Shui-Tong Lee,et al.  Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles. , 2010, Nano letters.

[131]  Zhiming M. Wang,et al.  Broadband efficiency enhancement in quantum dot solar cells coupled with multispiked plasmonic nanostars , 2015 .

[132]  Jian Shi,et al.  Three-dimensional high-density hierarchical nanowire architecture for high-performance photoelectrochemical electrodes. , 2011, Nano letters.

[133]  Paul L. McEuen,et al.  Supporting Online Material for Extremely Efficient Multiple Electron-Hole Pair Generation in Carbon Nanotube Photodiodes , 2009 .

[134]  Shui-Tong Lee,et al.  High-performance photoelectrochemical cells from ionic liquid electrolyte in methyl-terminated silicon nanowire arrays. , 2010, ACS nano.

[135]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[136]  Volker Schmidt,et al.  Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism , 2007 .

[137]  J. Cahoon,et al.  Identifying crystallization- and incorporation-limited regimes during vapor-liquid-solid growth of Si nanowires. , 2014, ACS nano.

[138]  M. Green,et al.  Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells , 2009 .

[139]  E. Alsema Energy pay‐back time and CO2 emissions of PV systems , 2000 .

[140]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[141]  Ning Wang,et al.  Silicon nanowires prepared by laser ablation at high temperature , 1998 .

[142]  Bodo Fuhrmann,et al.  Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy. , 2005, Nano letters.

[143]  J. Tersoff,et al.  Determination of size effects during the phase transition of a nanoscale Au-Si eutectic. , 2009, Physical review letters.

[144]  R. Turan,et al.  Enhanced localized surface plasmon resonance obtained in two step etched silicon nanowires decorated with silver nanoparticles , 2013 .

[145]  A. Lal,et al.  Vacuum-free self-powered parallel electron lithography with sub-35-nm resolution. , 2010, Nano letters.

[146]  S. Ikeda,et al.  Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts , 2008 .

[147]  M. K. Dawood,et al.  Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching , 2012 .

[148]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[149]  Kok-Keong Lew,et al.  Silicon nanowire array photelectrochemical cells. , 2007, Journal of the American Chemical Society.

[150]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[151]  Zhipeng Huang,et al.  Oxidation Rate Effect on the Direction of Metal-Assisted Chemical and Electrochemical Etching of Silicon , 2010 .

[152]  Amit Lal,et al.  High-efficiency ordered silicon nano-conical-frustum array solar cells by self-powered parallel electron lithography. , 2010, Nano letters.

[153]  P. Werner,et al.  Photovoltaic Properties of p-Doped GaAs Nanowire Arrays Grown on n-Type GaAs(111)B Substrate , 2009, Nanoscale research letters.

[154]  M. Povinelli,et al.  Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications. , 2009, Optics express.

[155]  Yi Shi,et al.  Improved antireflection properties and optimized structure for passivation of well-separated, vertical silicon nanowire arrays for solar cell applications , 2014 .

[156]  Supratik Guha,et al.  Characteristics of vapor–liquid–solid grown silicon nanowire solar cells , 2009 .

[157]  S. Forrest,et al.  Intermediate-band solar cells employing quantum dots embedded in an energy fence barrier. , 2007, Nano letters.

[158]  Donald G. Truhlar,et al.  Theoretical Chemistry Accounts , 2001 .

[159]  Shuqing Yu,et al.  Analysis of surface recombination in nanowire array solar cells , 2012 .

[160]  Wenzhong Shen,et al.  High‐Efficiency Nanostructured Silicon Solar Cells on a Large Scale Realized Through the Suppression of Recombination Channels , 2015, Advanced materials.

[161]  Shui-Tong Lee,et al.  A simple route to annihilate defects in silicon nanowires , 2000 .

[162]  F. Martín,et al.  Single-Crystalline Silicon Nanowire Array-Based Photoelectrochemical Cells , 2009 .

[163]  Tadahiro Ohmi,et al.  Mechanism of Metallic Particle Growth and Metal‐Induced Pitting on Si Wafer Surface in Wet Chemical Processing , 1994 .

[164]  Z. Fan,et al.  Electrical Property of ZnO Nanowire Field-Effect Transistor Characterized with a Scanning Probe , 2005 .

[165]  C. Poulton,et al.  Modal analysis of enhanced absorption in silicon nanowire arrays. , 2011, Optics express.

[166]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[167]  Md. Imrul Kayes,et al.  Comparative study of absorption in tilted silicon nanowire arrays for photovoltaics , 2014, Nanoscale Research Letters.

[168]  Robert A. Street,et al.  Reflectivity of disordered silicon nanowires , 2008 .

[169]  後藤 良造,et al.  速報誌 Chemistry Letters 創刊のその後 , 1974 .

[170]  P. Pehrsson,et al.  Decoupling Diameter and Pitch in Silicon Nanowire Arrays Made by Metal‐Assisted Chemical Etching , 2014 .

[171]  Ja-Yeon Kim,et al.  In-situ chlorine passivation to suppress surface-dominant transport in silicon nanowire devices , 2010, NanoScience + Engineering.

[172]  M. Islam,et al.  Long minority carrier diffusion lengths in bridged silicon nanowires. , 2015, Nano letters.

[173]  Chito Kendrick,et al.  Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths , 2010 .

[174]  Yuh‐Lang Lee,et al.  Highly Efficient Quantum‐Dot‐Sensitized Solar Cell Based on Co‐Sensitization of CdS/CdSe , 2009 .

[175]  S. Kodambaka,et al.  Control of Si nanowire growth by oxygen. , 2006, Nano letters.

[176]  R. Maboudian,et al.  Synthesis of High Density, Size-Controlled Si Nanowire Arrays via Porous Anodic Alumina Mask , 2006 .

[177]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[178]  Bingquan Wang,et al.  Facile Fabrication of Bi2WO6/Ag2S Heterostructure with Enhanced Visible-Light-Driven Photocatalytic Performances , 2016, Nanoscale Research Letters.

[179]  R. Scholz,et al.  Growth of silicon nanowires by chemical vapour deposition on gold implanted silicon substrates , 2006 .

[180]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[181]  Martin Steglich,et al.  Core–shell heterojunction solar cells on silicon nanowire arrays , 2012 .

[182]  Huiyun Liu,et al.  Self-catalyzed GaAsP nanowires grown on silicon substrates by solid-source molecular beam epitaxy. , 2013, Nano letters.

[183]  Peidong Yang,et al.  Silicon Vertically Integrated Nanowire Field Effect Transistors , 2006 .

[184]  U. Gösele,et al.  Silicon nanowhiskers grown on 〈111〉Si substrates by molecular-beam epitaxy , 2004 .

[185]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[186]  J. Cahoon,et al.  Design principles for photovoltaic devices based on Si nanowires with axial or radial p-n junctions. , 2012, Nano letters.

[187]  Yeshayahu Lifshitz,et al.  Oxide‐Assisted Growth of Semiconducting Nanowires , 2003 .

[188]  Nadine Geyer,et al.  Ordered arrays of vertically aligned [110] silicon nanowires by suppressing the crystallographically preferred <100> etching directions. , 2009, Nano letters.

[189]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[190]  G. Schmid The Nature of Nanotechnology , 2010 .

[191]  Yunjie Yan,et al.  Aligned single-crystalline Si nanowire arrays for photovoltaic applications. , 2005, Small.

[192]  Matthew R. Shaner,et al.  Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2 , 2015 .

[193]  J. P. Connolly,et al.  Strain-balanced GaAsP/InGaAs quantum well solar cells , 1999 .

[194]  V. Logeeswaran,et al.  Postgrowth In Situ Chlorine Passivation for Suppressing Surface-Dominant Transport in Silicon Nanowire Devices , 2012, IEEE Transactions on Nanotechnology.

[195]  L. Interrante,et al.  Chemistry of Materials Turns Twenty-One , 2009 .

[196]  Wei-Gang Xie,et al.  Journal of Materials Chemistry: Developing to serve the materials chemistry community , 2010 .

[197]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[198]  D. Thompson,et al.  GaAs core--shell nanowires for photovoltaic applications. , 2009, Nano letters.

[199]  Shui-Tong Lee,et al.  Oxide-Assisted Semiconductor Nanowire Growth , 1999 .

[200]  R. Maboudian,et al.  Solvent-induced formation of unidirectionally curved and tilted Si nanowires during metal-assisted chemical etching , 2013 .

[201]  T. Yen,et al.  Morphological Control of Single‐Crystalline Silicon Nanowire Arrays near Room Temperature , 2008 .

[202]  Ross C. McPhedran,et al.  Nanowire array photovoltaics: Radial disorder versus design for optimal efficiency , 2014, 1407.7602.

[203]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[204]  S. Senz,et al.  Atomically smooth p-doped silicon nanowires catalyzed by aluminum at low temperature. , 2011, ACS nano.

[205]  Shui-Tong Lee,et al.  Temperature Dependence of Si Nanowire Morphology , 2001 .

[206]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[207]  Nathan S. Lewis,et al.  Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells , 2005 .

[208]  N. Lewis Toward Cost-Effective Solar Energy Use , 2007, Science.

[209]  Peidong Yang,et al.  Growth and Electrical Characteristics of Platinum‐Nanoparticle‐Catalyzed Silicon Nanowires , 2007 .

[210]  Adam C. Nielander,et al.  Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide , 2015 .

[211]  Yang Zhou,et al.  Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature , 2014, Nanoscale Research Letters.

[212]  N. Fang,et al.  Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching , 2013, Nanotechnology.

[213]  G. Meng,et al.  Synthesis of Ordered Single Crystal Silicon Nanowire Arrays , 2001 .

[214]  Henry I. Smith,et al.  Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. , 2008, Nano letters.

[215]  G. Somorjai,et al.  Fabrication of Size-Tunable Large-Area Periodic Silicon Nanopillar Arrays with Sub-10-nm Resolution , 2003 .

[216]  Ali Javey,et al.  Dramatic reduction of surface recombination by in situ surface passivation of silicon nanowires. , 2011, Nano letters.

[217]  Kui‐Qing Peng,et al.  Motility of Metal Nanoparticles in Silicon and Induced Anisotropic Silicon Etching , 2008 .

[218]  J. Tersoff,et al.  Structure, growth kinetics, and ledge flow during vapor-solid-solid growth of copper-catalyzed silicon nanowires. , 2010, Nano letters.

[219]  I. Oh,et al.  Enhanced photoelectrochemical hydrogen production from silicon nanowire array photocathode. , 2012, Nano letters.

[220]  J. Baldwin,et al.  Flow-based solution-liquid-solid nanowire synthesis. , 2013, Nature nanotechnology.

[221]  W. Buhro,et al.  Solution–Liquid–Solid Growth of Soluble GaAs Nanowires , 2003 .

[222]  Harry A. Atwater,et al.  Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes , 2014 .

[223]  Meicheng Li,et al.  Linear length-dependent light-harvesting ability of silicon nanowire , 2015 .

[224]  Connie J. Chang-Hasnain,et al.  Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires , 2009 .

[225]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[226]  Peter J. Pauzauskie,et al.  Crystallographic alignment of high-density gallium nitride nanowire arrays , 2004, Nature materials.

[227]  Niyazi Serdar Sariciftci,et al.  Organic solar cells: An overview , 2004 .

[228]  Rihong Zhu,et al.  Design of a plasmonic back reflector for silicon nanowire decorated solar cells. , 2012, Optics letters.

[229]  Robert A. Laudise,et al.  Journal of Materials Research Editor’s Report , 1995 .

[230]  Vishwanath Ramamurthi,et al.  Ultra-low contact resistance of epitaxially interfaced bridged silicon nanowires , 2007 .

[231]  Peidong Yang,et al.  Controlled growth of Si nanowire arrays for device integration. , 2005, Nano letters.

[232]  B. Korgel,et al.  Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. , 2005, Nano letters.

[233]  Thomas Geiger,et al.  Built-in quantum dot antennas in dye-sensitized solar cells. , 2010, ACS nano.

[234]  Xiaolin Zheng,et al.  Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. , 2013, Nano letters.

[235]  Hua Bao,et al.  Optical absorption enhancement in disordered vertical silicon nanowire arrays for photovoltaic applications. , 2010, Optics letters.

[236]  G. Jia,et al.  Silicon Nanowire Solar Cells With Radial p-n Heterojunction on Crystalline Silicon Thin Films: Light Trapping Properties , 2014, IEEE Journal of Photovoltaics.

[237]  George C. Schatz,et al.  Journal of Physical Chemistry A: Editorial , 2006 .

[238]  H. Da,et al.  Modulation of the work function of silicon nanowire by chemical surface passivation: a DFT study , 2010 .

[239]  重治 小野木,et al.  Journal of Applied physics,Vol.33 : 1962年に発表されたレオロジー関連の論文 , 1963 .

[240]  Shui-Tong Lee,et al.  Synthesis of Large Areas of Highly Oriented, Very Long Silicon Nanowires , 2000 .

[241]  Nathan S Lewis,et al.  Photovoltaic measurements in single-nanowire silicon solar cells. , 2008, Nano letters.

[242]  Xin Wang,et al.  Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. , 2009, Nano letters.

[243]  Olav Solgaard,et al.  Controlling uncoupled resonances in photonic crystals through breaking the mirror symmetry. , 2008, Optics express.

[244]  Brian A. Korgel,et al.  Supercritical Fluid–Liquid–Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals , 2003 .

[245]  Muluneh Alemayehu,et al.  Enhanced photon absorption of single nanowire α-Si solar cells modulated by silver core. , 2012, Optics express.

[246]  Ze Zhang,et al.  Transmission electron microscopy study of Si nanowires , 1998 .

[247]  H. Dai,et al.  High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation , 2013, Science.

[248]  S. Senz,et al.  Epitaxial growth of silicon nanowires using an aluminium catalyst , 2006, Nature nanotechnology.

[249]  Willem L. Vos,et al.  Broad‐band and Omnidirectional Antireflection Coatings Based on Semiconductor Nanorods , 2009 .

[250]  Che-wei Lin,et al.  Surface passivation of efficient nanotextured black silicon solar cells using thermal atomic layer deposition. , 2013, ACS applied materials & interfaces.

[251]  Hongwei Zhu,et al.  Graphene/silicon nanowire Schottky junction for enhanced light harvesting. , 2011, ACS applied materials & interfaces.

[252]  Hongyu Yu,et al.  High-efficiency crystalline si thin film solar cells with Si nanopillar array textured surfaces , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[253]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[254]  Xiaolin Zheng,et al.  Fabrication of flexible and vertical silicon nanowire electronics. , 2012, Nano letters.

[255]  Nathan S. Lewis,et al.  Flexible Polymer‐Embedded Si Wire Arrays , 2009 .

[256]  Joan M. Redwing,et al.  Diameter‐Controlled Synthesis of Silicon Nanowires Using Nanoporous Alumina Membranes , 2005 .

[257]  Joshua M. Spurgeon,et al.  Flexible, Polymer‐Supported, Si Wire Array Photoelectrodes , 2010, Advanced materials.

[258]  Rusli,et al.  Core-Shell Heterojunction Solar Cells Based on Disordered Silicon Nanowire Arrays , 2016 .

[259]  Junshuai Li,et al.  Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics , 2012, Nanotechnology.

[260]  Zongfu Yu,et al.  Detailed balance analysis and enhancement of open-circuit voltage in single-nanowire solar cells. , 2014, Nano letters.

[261]  Zhiyong Fan,et al.  Ordered arrays of dual-diameter nanopillars for maximized optical absorption. , 2010, Nano letters.

[262]  P. Spinelli,et al.  Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators , 2012, Nature Communications.

[263]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[264]  N. Fang,et al.  Non-lithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[265]  S. Christiansen,et al.  Geometrical optimization and contact configuration in radial pn junction silicon nanorod and microrod solar cells , 2013 .

[266]  Gong Zhang,et al.  Nanotube–Silicon Heterojunction Solar Cells , 2008 .

[267]  P. Yu,et al.  13% efficiency hybrid organic/silicon-nanowire heterojunction solar cell via interface engineering. , 2013, ACS nano.

[268]  Yin Wu,et al.  Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. , 2005, Angewandte Chemie.

[269]  Zongfu Yu,et al.  Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. , 2009, Nano letters.

[270]  Kazuhito Hashimoto,et al.  Efficiency enhancement of polymer photovoltaic devices hybridized with ZnO nanorod arrays by the introduction of a vanadium oxide buffer layer , 2008 .

[271]  N. Lewis,et al.  10 μm minority-carrier diffusion lengths in Si wires synthesized by Cu-catalyzed vapor-liquid-solid growth , 2009 .

[272]  Val Zwiller,et al.  Growth and optical properties of axial hybrid III-V/silicon nanowires. , 2012, Nature communications.

[273]  Yi Cui,et al.  Nanowire Solar Cells , 2011 .

[274]  John Robertson,et al.  Gold-catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition , 2003 .

[275]  K. Tsujino,et al.  Boring Deep Cylindrical Nanoholes in Silicon Using Silver Nanoparticles as a Catalyst , 2005 .

[276]  Schmitt Sebastian,et al.  New silicon architectures by gold-assisted chemical etching. , 2011, ACS applied materials & interfaces.

[277]  Jan Dellith,et al.  Multiple Core–Shell Silicon Nanowire-Based Heterojunction Solar Cells , 2013 .

[278]  Wenjun Zhang,et al.  Surface‐Dominated Transport Properties of Silicon Nanowires , 2008 .

[279]  J. P. Connolly,et al.  Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells , 2001 .

[280]  Shadi A. Dayeh,et al.  Epitaxial growth of radial Si p-i-n junctions for photovoltaic applications , 2013 .

[281]  Shui-Tong Lee,et al.  Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. , 2011, Journal of the American Chemical Society.

[282]  Kui‐Qing Peng,et al.  Continuous-flow Mass Production of Silicon Nanowires via Substrate-Enhanced Metal-Catalyzed Electroless Etching of Silicon with Dissolved Oxygen as an Oxidant , 2014, Scientific Reports.

[283]  B. Korgel,et al.  Solution-liquid-solid (SLS) growth of silicon nanowires. , 2008, Journal of the American Chemical Society.

[284]  J. Linnros,et al.  Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. , 2005, Nano letters.

[285]  Lars Montelius,et al.  Nanowire Arrays Defined by Nanoimprint Lithography , 2004 .

[286]  Xiaolin Zheng,et al.  Fabrication of nanowire electronics on nonconventional substrates by water-assisted transfer printing method. , 2011, Nano letters.

[287]  Hui Pan,et al.  Growth of Si nanowires by thermal evaporation , 2005 .

[288]  Hong-Jhang Syu,et al.  Silicon nanowire/organic hybrid solar cell with efficiency of 8.40% , 2012 .

[289]  Hui Song,et al.  Enhanced Light Absorption of Silicon Nanotube Arrays for Organic/Inorganic Hybrid Solar Cells , 2014, Advanced materials.

[290]  X. Duan,et al.  Electrically conductive and optically active porous silicon nanowires. , 2009, Nano letters.

[291]  S. Kim,et al.  Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes. , 2016, Nanoscale.

[292]  Xiaomin Ren,et al.  Enhanced photovoltaic performance of an inclined nanowire array solar cell. , 2015, Optics express.

[293]  Michael Dröscher,et al.  Angewandte Chemie International Edition feiert 50. Geburtstag , 2011 .

[294]  Sébastien Dubois,et al.  Light-Induced-Degradation effects in boron–phosphorus compensated n-type Czochralski silicon , 2010 .

[295]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[296]  D. Teng,et al.  High-density silicon nanowires prepared via a two-step template method. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[297]  Nathan S. Lewis,et al.  Energy-Conversion Properties of Vapor-Liquid-Solid–Grown Silicon Wire-Array Photocathodes , 2010, Science.

[298]  M. Sendova-Vassileva,et al.  Preparation of thin porous silicon layers by stain etching , 1997 .

[299]  Diana L. Huffaker,et al.  Improved device performance of InAs∕GaAs quantum dot solar cells with GaP strain compensation layers , 2007 .

[300]  Zhipeng Huang,et al.  Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. , 2008, Nano letters.

[301]  J. Luther,et al.  Peak External Photocurrent Quantum Efficiency Exceeding 100% via MEG in a Quantum Dot Solar Cell , 2011, Science.

[302]  Charles M Lieber,et al.  Coaxial multishell nanowires with high-quality electronic interfaces and tunable optical cavities for ultrathin photovoltaics , 2012, Proceedings of the National Academy of Sciences.

[303]  Albert van den Berg,et al.  Novel top-down wafer-scale fabrication of single crystal silicon nanowires. , 2009, Nano letters.

[304]  Mickael Martin,et al.  Highly organised and dense vertical silicon nanowire arrays grown in porous alumina template on <100> silicon wafers , 2013, Nanoscale Research Letters.

[305]  J. Gilman,et al.  Nanotechnology , 2001 .

[306]  Nathan S Lewis,et al.  High aspect ratio silicon wire array photoelectrochemical cells. , 2007, Journal of the American Chemical Society.

[307]  Hideo Hosono,et al.  Deep-ultraviolet transparent conductive β-Ga2O3 thin films , 2000 .

[308]  Charles M Lieber,et al.  Tuning light absorption in core/shell silicon nanowire photovoltaic devices through morphological design. , 2012, Nano letters.

[309]  Woo Lee,et al.  Au/Ag bilayered metal mesh as a si etching catalyst for controlled fabrication of si nanowires. , 2011, ACS nano.

[310]  Y. Vorobiev,et al.  Physica E: Low-dimensional systems and nanostructures - Preface , 2013 .

[311]  Songyou Wang,et al.  Substantial influence on solar energy harnessing ability by geometries of ordered Si nanowire array , 2014, Nanoscale Research Letters.

[312]  Matthew J. Rosseinsky,et al.  Physical Review B , 2011 .

[313]  Yu-Bin Chen,et al.  Silicon Nanowires for Solar Thermal Energy Harvesting: an Experimental Evaluation on the Trade-off Effects of the Spectral Optical Properties , 2016, Nanoscale Research Letters.

[314]  Jing-Shun Huang,et al.  Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass , 2009 .

[315]  October I Physical Review Letters , 2022 .

[316]  Matthew J. Rosseinsky,et al.  Advanced Functional Materials , 2015, Materials Science Forum.

[317]  Prashant V. Kamat,et al.  Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters , 2008 .

[318]  J. U. Lee,et al.  Photovoltaic effect in ideal carbon nanotube diodes , 2005 .

[319]  Xin Wang,et al.  Silicon nanowires for advanced energy conversion and storage , 2013 .

[320]  M. J. Lo Faro,et al.  Silicon nanowire and carbon nanotube hybrid for room temperature multiwavelength light source , 2015, Scientific Reports.

[321]  Kui‐Qing Peng,et al.  High-performance silicon nanowire array photoelectrochemical solar cells through surface passivation and modification. , 2011, Angewandte Chemie.

[322]  Timothy J. Trentler,et al.  Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth , 1995, Science.

[323]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[324]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[325]  M. Povinelli,et al.  Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics. , 2011, Optics express.

[326]  M. Li,et al.  Hybrid tapered silicon nanowire/PEDOT:PSS solar cells , 2015 .

[327]  M. Dutta,et al.  Effect of nanowire length on the performance of silicon nanowires based solar cell , 2014 .

[328]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[329]  A. J. Lu Point defects in the silicon nanowire , 2013, Other Conferences.

[330]  Michelle L. Povinelli,et al.  The effect of plasmonic particles on solar absorption in vertically aligned silicon nanowire arrays , 2010 .

[331]  Chun-Ying Huang,et al.  Efficient light harvesting by photon downconversion and light trapping in hybrid ZnS nanoparticles/Si nanotips solar cells. , 2010, ACS nano.

[332]  P. Yu,et al.  Rear interface engineering of hybrid organic-silicon nanowire solar cells via blade coating. , 2016, Optics express.

[333]  Prashant Singh,et al.  Stability Study of PEDOT:PSS/Micro-Textured Silicon Hetero-Junction Solar Cells , 2014 .

[334]  Jeffrey Bokor,et al.  Fabrication of Sub-10-nm Silicon Nanowire Arrays by Size Reduction Lithography , 2003 .

[335]  Amy S. Mullin,et al.  Suitability of Technology-Driven Research for the Journal of Physical Chemistry C , 2017 .

[336]  Emanuel Tutuc,et al.  Radial modulation doping in core-shell nanowires. , 2014, Nature nanotechnology.

[337]  V. Fthenakis,et al.  The energy payback time of advanced crystalline silicon PV modules in 2020: a prospective study , 2014 .