A unified approach for different concepts of robustness and stochastic programming via non-linear scalarizing functionals

Abstract We show that many different concepts of robustness and of stochastic programming can be described as special cases of a general non-linear scalarization method by choosing the involved parameters and sets appropriately. This leads to a unifying concept which can be used to handle robust and stochastic optimization problems. Furthermore, we introduce multiple objective (deterministic) counterparts for uncertain optimization problems and discuss their relations to well-known scalar robust optimization problems by using the non-linear scalarization concept. Finally, we mention some relations between robustness and coherent risk measures.

[1]  S. W. Stratton,et al.  The National Bureau of Standards , 1905, Transactions of the American Institute of Electrical Engineers.

[2]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[3]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[4]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[5]  E. Polak,et al.  On Multicriteria Optimization , 1976 .

[6]  Johannes Jahn,et al.  Scalarization in vector optimization , 1984, Math. Program..

[7]  P. Serafini,et al.  Scalarizing vector optimization problems , 1984 .

[8]  C. Gerth,et al.  Nonconvex separation theorems and some applications in vector optimization , 1990 .

[9]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[10]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[11]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[12]  Philippe Artzner,et al.  Coherent Measures of Risk , 1999 .

[13]  C. Zălinescu,et al.  A New Minimal Point Theorem in Product Spaces , 1999 .

[14]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[15]  Włodzimierz Ogryczak,et al.  Multiple criteria optimization and decisions under risk , 2002 .

[16]  H. Riahi,et al.  Variational Methods in Partially Ordered Spaces , 2003 .

[17]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[18]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[19]  Serpil Sayin,et al.  The Multiobjective Discrete Optimization Problem: A Weighted Min-Max Two-Stage Optimization Approach and a Bicriteria Algorithm , 2005, Manag. Sci..

[20]  Serpil Sayin,et al.  Algorithm robust for the bicriteria discrete optimization problem , 2006, Ann. Oper. Res..

[21]  Anna Grazia Quaranta,et al.  Robust optimization of conditional value at risk and portfolio selection , 2008 .

[22]  Yves De Smet,et al.  About the applicability of MCDA to some robustness problems , 2006, Eur. J. Oper. Res..

[23]  Patrice Perny,et al.  A decision-theoretic approach to robust optimization in multivalued graphs , 2006, Ann. Oper. Res..

[24]  Gabriele Eichfelder,et al.  Adaptive Scalarization Methods in Multiobjective Optimization , 2008, Vector Optimization.

[25]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[26]  Sebastian Stiller,et al.  Extending Concepts of Reliability - Network Creation Games, Real-time Scheduling, and Robust Optimization , 2009 .

[27]  Matteo Fischetti,et al.  Light Robustness , 2009, Robust and Online Large-Scale Optimization.

[28]  Wlodzimierz Ogryczak,et al.  On efficient WOWA optimization for decision support under risk , 2009, Int. J. Approx. Reason..

[29]  Rolf H. Möhring,et al.  The Concept of Recoverable Robustness, Linear Programming Recovery, and Railway Applications , 2009, Robust and Online Large-Scale Optimization.

[30]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[31]  Alexander Shapiro,et al.  Lectures on Stochastic Programming: Modeling and Theory , 2009 .

[32]  Anita Schöbel,et al.  A Scenario-Based Approach for Robust Linear Optimization , 2011, TAPAS.

[33]  E. Köbis,et al.  Relations between strictly robust optimization problems and a nonlinear scalarization method , 2012 .

[34]  W. Ogryczak Robust Decisions under Risk for Imprecise Probabilities , 2012 .

[35]  Wlodzimierz Ogryczak,et al.  Tail mean and related robust solution concepts , 2014, Int. J. Syst. Sci..

[36]  Anita Schöbel,et al.  Generalized light robustness and the trade-off between robustness and nominal quality , 2014, Math. Methods Oper. Res..

[37]  S. Gast Network Flow Problems with Uncertain Input Data in the Context of Supply Chain Management Applications , 2014 .