Information spreading in context

Information spreading processes are central to human interactions. Despite recent studies in online domains, little is known about factors that could affect the dissemination of a single piece of information. In this paper, we address this challenge by combining two related but distinct datasets, collected from a large scale privacy-preserving distributed social sensor system. We find that the social and organizational context significantly impacts to whom and how fast people forward information. Yet the structures within spreading processes can be well captured by a simple stochastic branching model, indicating surprising independence of context. Our results build the foundation of future predictive models of information flow and provide significant insights towards design of communication platforms.

[1]  Patrick Lincoln,et al.  Epidemic profiles and defense of scale-free networks , 2003, WORM '03.

[2]  Yvonne Rogers,et al.  Managing one's Social Network: Does Age Make a Difference? , 2003, INTERACT.

[3]  Ravi Kumar,et al.  On the Bursty Evolution of Blogspace , 2003, WWW '03.

[4]  D. Strang,et al.  DIFFUSION IN ORGANIZATIONS AND SOCIAL MOVEMENTS: From Hybrid Corn to Poison Pills , 1998 .

[5]  F. Galton,et al.  On the Probability of the Extinction of Families , 1875 .

[6]  Esteban Moro,et al.  Impact of human activity patterns on the dynamics of information diffusion. , 2009, Physical review letters.

[7]  Thomas W. Valente Network models of the diffusion of innovations , 1996, Comput. Math. Organ. Theory.

[8]  Gueorgi Kossinets,et al.  Empirical Analysis of an Evolving Social Network , 2006, Science.

[9]  S. Bornholdt,et al.  Scale-free topology of e-mail networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Jon Kleinberg,et al.  Maximizing the spread of influence through a social network , 2003, KDD '03.

[11]  Matthew O Jackson,et al.  Using selection bias to explain the observed structure of Internet diffusions , 2010, Proceedings of the National Academy of Sciences.

[12]  Lada A. Adamic,et al.  Information flow in social groups , 2003, cond-mat/0305305.

[13]  Herbert W. Hethcote,et al.  The Mathematics of Infectious Diseases , 2000, SIAM Rev..

[14]  Yan Bing Zhang,et al.  Social Interactions Across Media , 2004 .

[15]  Thomas Karagiannis,et al.  WWW 2009 MADRID! Track: Social Networks and Web 2.0 / Session: Diffusion and Search in Social Networks Behavioral Profiles for Advanced Email Features , 2022 .

[16]  Christos Faloutsos,et al.  Patterns of Cascading Behavior in Large Blog Graphs , 2007, SDM.

[17]  B. Wellman,et al.  The Internet in everyday life , 2002 .

[18]  Lada A. Adamic,et al.  How to search a social network , 2005, Soc. Networks.

[19]  Sinan Aral,et al.  Value of Social Network -- A Large-Scale Analysis on Network Structure Impact to Financial Revenue of Information Technology Consultants , 2009 .

[20]  Ching-Yung Lin,et al.  On the quality of inferring interests from social neighbors , 2010, KDD.

[21]  Marc A. Smith,et al.  Forward thinking , 2005, CEAS.

[22]  Lada A. Adamic,et al.  Tracking information epidemics in blogspace , 2005, The 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI'05).

[23]  Christos Faloutsos,et al.  On the Vulnerability of Large Graphs , 2010, 2010 IEEE International Conference on Data Mining.

[24]  Roger V. Gould,et al.  Structures of Mediation: A Formal Approach to Brokerage in Transaction Networks , 1989 .

[25]  Jean-Pierre Eckmann,et al.  Entropy of dialogues creates coherent structures in e-mail traffic. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Albert-László Barabási,et al.  Modeling bursts and heavy tails in human dynamics , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[28]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[29]  Jon M. Kleinberg,et al.  Tracing information flow on a global scale using Internet chain-letter data , 2008, Proceedings of the National Academy of Sciences.

[30]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[31]  Jure Leskovec,et al.  The dynamics of viral marketing , 2005, EC '06.

[32]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[33]  Christos Faloutsos,et al.  Epidemic spreading in real networks: an eigenvalue viewpoint , 2003, 22nd International Symposium on Reliable Distributed Systems, 2003. Proceedings..

[34]  Ravi Kumar,et al.  Dynamics of conversations , 2010, KDD.

[35]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[36]  Albert-László Barabási,et al.  The origin of bursts and heavy tails in human dynamics , 2005, Nature.

[37]  Guido Caldarelli,et al.  Scale-Free Networks , 2007 .

[38]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[39]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[40]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[41]  T. Valente,et al.  Network models of the diffusion of innovations , 1995, Comput. Math. Organ. Theory.