Pencils of real symmetric matrices and the numerical range
暂无分享,去创建一个
[1] H. McLaughlin,et al. Approximation of random functions , 1977 .
[2] F. Uhlig,et al. Simultaneous Block Diagonalization of Two Real Symmetric Matrices , 1973 .
[3] M. Hestenes. Pairs of quadratic forms , 1968 .
[4] P. Laurent. Approximation et optimisation , 1972 .
[6] H. McLaughlin,et al. A computational procedure for the approximation of random functions , 1976 .
[7] M. Marcus. Finite dimensional multilinear algebra , 1973 .
[8] F. Uhlig,et al. A canonical form for a pair of real symmetric matrices that generate a nonsingular pencil , 1976 .
[9] F. Hausdorff. Der Wertvorrat einer Bilinearform , 1919 .
[10] On the maximal number of linearly independent real vectors annihilated simultaneously by two real quadratic forms , 1973 .
[11] E. Calabi. Linear systems of real quadratic forms. II , 1964 .
[12] E. Cheney. Introduction to approximation theory , 1966 .
[13] Yik-Hoi Au-Yeung. A theorem on a mapping from a sphere to the circle and the simultaneous diagonalization of two hermitian matrices , 1969 .
[14] F. Uhlig,et al. DEFINITE AND SEMIDEFINITE MATRICES IN A REAL SYMMETRIC MATRIX PENCIL , 1973 .
[15] James Hardy Wilkinson,et al. Rounding errors in algebraic processes , 1964, IFIP Congress.
[16] L. Brickman. ON THE FIELD OF VALUES OF A MATRIX , 1961 .