Convex combinations of strict t-norms

Alsina, Frank, and Schweizer posed a question whether a non-trivial convex combination of triangular norms can ever be a triangular norm. In this paper we deal with the class of strict t-norms with well-defined first partial derivatives along their zero borders. We show that the answer to the question is negative for certain couples of such t-norms and we state out possible further research.

[1]  H.-J. Zimmermann Fuzzy set theory , 2010 .

[2]  Yao Ouyang,et al.  Some observations about the convex combination of continuous triangular norms , 2008 .

[3]  Yao Ouyang,et al.  On the convex combination of TD and continuous triangular norms , 2007, Inf. Sci..

[4]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[5]  N. H. Abel Untersuchung der Functionen zweier unabhängig veränderlichen Größen x und y, wie f(x, y), welche die Eigenschaft haben, daß f(z, f (x,y)) eine symmetrische Function von z, x und y ist. , 1826 .

[6]  Sándor Jenei,et al.  On the convex combination of left-continuous t-norms , 2006 .

[7]  Donald R. Chalice A characterization of the Cantor function , 1991 .

[8]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[9]  R. Lowen Fuzzy Set Theory , 1996 .

[10]  Mirko Navara,et al.  Two methods of reconstruction of generators of continuous t-norms , 2008 .

[11]  M. Navara,et al.  Explicit formulas for generators of triangular norms , 2010, Publicationes Mathematicae Debrecen.

[12]  Radko Mesiar,et al.  Convex combinations of continuous t-norms with the same diagonal function , 2008 .

[13]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[14]  Fabrizio Durante,et al.  A note on the convex combinations of triangular norms , 2008, Fuzzy Sets Syst..

[15]  W. M. Faucett Compact semigroups irreducibly connected between two idempotents , 1955 .

[16]  Robert Lowen Fuzzy set theory - basic concepts, techniques and bibliography , 1996 .

[17]  J. Aczél,et al.  Sur les opérations définies pour nombres réels , 1948 .

[18]  Claudi Alsina,et al.  Problems on associative functions , 2003 .

[19]  Milan Petrík,et al.  Convex combinations of nilpotent triangular norms , 2009 .

[20]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[21]  C. Alsina On a method of Pi-Calleja for describing additive generators of associative functions , 1992 .

[22]  Thomas Vetterlein,et al.  Regular left-continuous t-norms , 2008 .