Modeling misidentification errors in capture-recapture studies using photographic identification of evolving marks.

Misidentification of animals is potentially important when naturally existing features (natural tags) are used to identify individual animals in a capture-recapture study. Photographic identification (photoID) typically uses photographic images of animals' naturally existing features as tags (photographic tags) and is subject to two main causes of identification errors: those related to quality of photographs (non-evolving natural tags) and those related to changes in natural marks (evolving natural tags). The conventional methods for analysis of capture-recapture data do not account for identification errors, and to do so requires a detailed understanding of the misidentification mechanism. Focusing on the situation where errors are due to evolving natural tags, we propose a misidentification mechanism and outline a framework for modeling the effect of misidentification in closed population studies. We introduce methods for estimating population size based on this model. Using a simulation study, we show that conventional estimators can seriously overestimate population size when errors due to misidentification are ignored, and that, in comparison, our new estimators have better properties except in cases with low capture probabilities (< 0.2) or low misidentification rates (< 2.5%).

[1]  Jun Yoshizaki Use of Natural Tags in Closed Population Capture-Recapture Studies: Modeling Misidentification , 2007 .

[2]  C. Langtimm,et al.  SURVIVAL ESTIMATES FOR FLORIDA MANATEES FROM THE PHOTO‐IDENTIFICATION OF INDIVIDUALS , 2004 .

[3]  Kenneth H. Pollock,et al.  Bayesian spatial modeling of data from avian point count surveys , 2008 .

[4]  James D Nichols,et al.  Assessing tiger population dynamics using photographic capture-recapture sampling. , 2006, Ecology.

[5]  PAUL M. LUKACS,et al.  RESEARCH NOTES: ESTIMATING POPULATION SIZE FROM DNA-BASED CLOSED CAPTURE–RECAPTURE DATA INCORPORATING GENOTYPING ERROR , 2005 .

[6]  E. Grant Visual Implant Elastomer Mark Retention Through Metamorphosis in Amphibian Larvae , 2008 .

[7]  S. Creel,et al.  Population size estimation in Yellowstone wolves with error‐prone noninvasive microsatellite genotypes , 2003, Molecular ecology.

[8]  S. Bhupathy Blotch structure in individual identification of the indian python Python molurus molurus linn. and its possible usage in population estimation , 1990 .

[9]  Sylvia Bradley Identification of individual adders (Vipera berus) by their head markings , 1989 .

[10]  Kenneth H. Pollock,et al.  ESTIMATING DETECTION PROBABILITIES FROM MULTIPLE-OBSERVER POINT COUNTS , 2006 .

[11]  Estimating Detection Probabilities from Multiple-Observer Point Counts (Estimación de Probabilidades de Detección a Partir de Conteos en Puntos Hechos por Varios Observadores) , 2006 .

[12]  R. Connolly,et al.  Abundance, movement and individual identification of leafy seadragons, Phycodurus eques (Pisces: Syngnathidae) , 2002 .

[13]  D. Swanepoel Identification of the Nile crocodile Crocodylus niloticus by the use of natural tail marks , 1996 .

[14]  W. Kendall,et al.  Iteroparity in the variable environment of the salamander Ambystoma tigrinum. , 2007, Ecology.

[15]  K. Ullas Karanth,et al.  Estimating tiger Panthera tigris populations from camera-trap data using capture-recapture models , 1995 .

[16]  Marcella J. Kelly,et al.  COMPUTER-AIDED PHOTOGRAPH MATCHING IN STUDIES USING INDIVIDUAL IDENTIFICATION: AN EXAMPLE FROM SERENGETI CHEETAHS , 2001 .

[17]  David R. Anderson,et al.  Statistical inference from capture data on closed animal populations , 1980 .

[18]  G. Seber,et al.  The estimation of animal abundance and related parameters , 1974 .