Splitting of Separatrices in Hamiltonian Systems and Symplectic Maps

A century ago, the phenomenon of the splitting of separatrices was discovered by Henri Poincare in his celebrated memoir on the three-body problem [39]. While trying to integrate the problem of the three bodies, expanding the solutions with respect to a small parameter, Poincare noticed that the main obstruction was due to the possibility of transversal intersection of invariant manifolds that were coincident (separatrices) for the unperturbed integrable problem. To measure the size of such splitting, he developed a perturbative method in the parameter of perturbation, say ɛ. and he was confronted with a singular separatrix splitting problem, in the sense that the separatrices of the unperturbed problem depended on e in an essential way. He already noticed that the size of the splitting of the separatrices predicted by his perturbative method was exponentially small with respect to ɛ [39, page 223], a fact which prevented him to provide rigorous results, since the remainder of his perturbative expansion was, in principle, O(ɛ2).

[1]  Carles Simó,et al.  Hamiltonian systems with three or more degrees of freedom , 1999 .

[2]  J. Gambaudo Perturbation of a Hopf Bifurcation by an External Time- Periodic Forcing , 1985 .

[3]  Tere M. Seara,et al.  Exponentially Small Splitting in Hamiltonian Systems , 1994 .

[4]  Robert W. Easton,et al.  Computing the dependence on a parameter of a family of unstable manifolds: generalized Melnikov formulas , 1984 .

[5]  Carles Simó,et al.  Averaging under Fast Quasiperiodic Forcing , 1994 .

[6]  H. Poincaré,et al.  Les méthodes nouvelles de la mécanique céleste , 1899 .

[7]  V G Gelfreich Reference systems for splitting of separatrices , 1997 .

[8]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[9]  Sigurd B. Angenent,et al.  A variational interpretation of Melnikov's function and exponentially small separatrix splitting , 1994 .

[10]  Amadeu Delshams,et al.  Melnikov Potential for Exact Symplectic Maps , 1997 .

[11]  Amadeu Delshams,et al.  Poincaré - Melnikov - Arnold method for analytic planar maps , 1996 .

[12]  John Seimenis Hamiltonian mechanics : integrability and chaotic behavior , 1994 .

[13]  Tere M. Seara,et al.  Splitting of Separatrices in Hamiltonian Systems with one and a half Degrees of Freedom , 1997 .

[14]  Ernest Fontich Rapidly Forced Planar Vector Fields and Splitting of Separatrices , 1995 .

[15]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[16]  Luigi Chierchia,et al.  Drift and diffusion in phase space , 1994 .

[17]  T. M. Seara,et al.  An asymptotic expression for the splitting of separatrices of the rapidly forced pendulum , 1992 .

[18]  James D. Meiss,et al.  Transport in Hamiltonian systems , 1984 .

[19]  Examples of nonintegrable analytic Hamiltonian vector fields with no small divisors , 1978 .

[20]  V. G. Gelfreich Separatrices Splitting for the Rapidly Forced Pendulum , 1994 .

[21]  Héctor E. Lomelí,et al.  Perturbations of elliptic billiards , 1996 .

[22]  Amadeu Delshams Valdés,et al.  Poincaré-Melnikov-Arnold method for analytic planar maps , 1995 .

[23]  V. F. Lazutkin,et al.  Exponentially small splittings in Hamiltonian systems. , 1991, Chaos.

[24]  Tere M. Seara,et al.  Exponentially Small Splitting of Separatrices Under Fast Quasiperiodic Forcing , 1997 .

[25]  Pierre Lochak,et al.  Arnold Diffusion; a Compendium of Remarks and Questions , 1999 .

[26]  M. B. Tabanov Separatrices splitting for Birkhoff's billiard in symmetric convex domain, closed to an ellipse. , 1994, Chaos.

[27]  Editors , 1986, Brain Research Bulletin.

[28]  Ernest Fontich Exponentially small upper bounds for the splitting of separatrices for high frequency periodic perturbations , 1993 .

[29]  Splitting of Separatrices for (Fast) Quasiperiodic Forcing , 1999 .

[30]  Poincaré-Melnikov-Arnold Method for Twist Maps , 1999 .

[31]  A. Neishtadt The separation of motions in systems with rapidly rotating phase , 1984 .

[32]  Giovanni Gallavotti,et al.  TWISTLESS KAM TORI, QUASI FLAT HOMOCLINIC INTERSECTIONS, AND OTHER CANCELLATIONS IN THE PERTURBATION SERIES OF CERTAIN COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS: A REVIEW , 1993, chao-dyn/9304012.

[33]  Martin Kummer,et al.  Transcendentally small transversality in the rapidly forced pendulum , 1993 .

[34]  Robert W. Easton,et al.  Transport through chaos , 1991 .

[35]  Bernold Fiedler,et al.  Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .

[36]  P. Levallois,et al.  Séparation des séparatrices du billard elliptique pour une perturbation algébrique et symétrique de l'ellipse , 1993 .

[37]  M. Glasser,et al.  Mel'nikov's function for two-dimensional mappings , 1989 .

[38]  Jürgen Moser,et al.  The analytic invariants of an area‐preserving mapping near a hyperbolic fixed point , 1956 .

[39]  Y. Suris,et al.  Integrable mappings of the standard type , 1989 .

[40]  Vladimir I. Arnold,et al.  Instability of Dynamical Systems with Several Degrees of Freedom , 2020, Hamiltonian Dynamical Systems.

[41]  David Sauzin,et al.  Résurgence paramétrique et exponentielle petitesse de l'écart des séparatrices du pendule rapidement forcé , 1995 .

[42]  J. Davenport Editor , 1960 .