Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions

Global sensitivity analysis aims at determining which uncertain input parameters of a computational model primarily drives the variance of the output quantities of interest. Sobol' indices are now routinely applied in this context when the input parameters are modelled by classical probability theory using random variables. In many practical applications however, input parameters are affected by both aleatory and epistemic (so-called polymorphic) uncertainty, for which imprecise probability representations have become popular in the last decade. In this paper, we consider that the uncertain input parameters are modelled by parametric probability boxes (p-boxes). We propose interval-valued (so-called imprecise) Sobol' indices as an extension of their classical definition. An original algorithm based on the concepts of augmented space, isoprobabilistic transforms and sparse polynomial chaos expansions is devised to allow for the computation of these imprecise Sobol' indices at extremely low cost. In particular, phantoms points are introduced to build an experimental design in the augmented space (necessary for the calibration of the sparse PCE) which leads to a smart reuse of runs of the original computational model. The approach is illustrated on three analytical and engineering examples which allows one to validate the proposed algorithms against brute-force double-loop Monte Carlo simulation.

[1]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[2]  B. Sudret,et al.  An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis , 2010 .

[3]  Paul Dupuis,et al.  Distinguishing and integrating aleatoric and epistemic variation in uncertainty quantification , 2011, 1103.1861.

[4]  A. Saltelli,et al.  On the Relative Importance of Input Factors in Mathematical Models , 2002 .

[5]  Peter E. Thornton,et al.  DIMENSIONALITY REDUCTION FOR COMPLEX MODELS VIA BAYESIAN COMPRESSIVE SENSING , 2014 .

[6]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[7]  Bruno Sudret,et al.  Computing derivative-based global sensitivity measures using polynomial chaos expansions , 2014, Reliab. Eng. Syst. Saf..

[8]  R. Brereton,et al.  Support vector machines for classification and regression. , 2010, The Analyst.

[9]  Harvey M. Wagner,et al.  Global Sensitivity Analysis , 1995, Oper. Res..

[10]  George Z. Gertner,et al.  Uncertainty and sensitivity analysis for models with correlated parameters , 2008, Reliab. Eng. Syst. Saf..

[11]  Loic Le Gratiet,et al.  Metamodel-based sensitivity analysis: polynomial chaos expansions and Gaussian processes , 2016, 1606.04273.

[12]  Scott Ferson,et al.  Arithmetic with uncertain numbers: rigorous and (often) best possible answers , 2004, Reliab. Eng. Syst. Saf..

[13]  Sankaran Mahadevan,et al.  Role of calibration, validation, and relevance in multi-level uncertainty integration , 2016, Reliab. Eng. Syst. Saf..

[14]  Scott Ferson,et al.  Sensitivity analysis using probability bounding , 2006, Reliab. Eng. Syst. Saf..

[15]  Jorge E. Hurtado,et al.  Neural-network-based reliability analysis: a comparative study , 2001 .

[16]  G. Blatman,et al.  Adaptive sparse polynomial chaos expansions for uncertainty propagation and sensitivity analysis , 2009 .

[17]  Sankaran Mahadevan,et al.  Separating the contributions of variability and parameter uncertainty in probability distributions , 2013, Reliab. Eng. Syst. Saf..

[18]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[19]  Bruno Sudret,et al.  Adaptive sparse polynomial chaos expansion based on least angle regression , 2011, J. Comput. Phys..

[20]  Jorge E. Hurtado,et al.  Assessment of reliability intervals under input distributions with uncertain parameters , 2013 .

[21]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[22]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[23]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[24]  Jon C. Helton,et al.  Survey of sampling-based methods for uncertainty and sensitivity analysis , 2006, Reliab. Eng. Syst. Saf..

[25]  Michael Oberguggenberger,et al.  Classical and imprecise probability methods for sensitivity analysis in engineering: A case study , 2009, Int. J. Approx. Reason..

[26]  Nicolas Gayton,et al.  A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models , 2013, Reliab. Eng. Syst. Saf..

[27]  Jon C. Helton,et al.  Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty , 2006, Reliab. Eng. Syst. Saf..

[28]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[29]  Bernard Krzykacz-Hausmann An approximate sensitivity analysis of results from complex computer models in the presence of epistemic and aleatory uncertainties , 2006, Reliab. Eng. Syst. Saf..

[30]  Omar M. Knio,et al.  Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach , 2012, Computational Geosciences.

[31]  Laurent Grisoni,et al.  HABILITATION A DIRIGER DES RECHERCHES , 2005 .

[32]  Laura Painton Swiler,et al.  Efficient algorithms for mixed aleatory-epistemic uncertainty quantification with application to radiation-hardened electronics. Part I, algorithms and benchmark results. , 2009 .

[33]  Nicolas Gayton,et al.  AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation , 2011 .

[34]  Paola Annoni,et al.  Non-parametric methods for global sensitivity analysis of model output with dependent inputs , 2015, Environ. Model. Softw..

[35]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[36]  M. Lemaire,et al.  Stochastic finite element: a non intrusive approach by regression , 2006 .

[37]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[38]  Sankaran Mahadevan,et al.  Relative contributions of aleatory and epistemic uncertainty sources in time series prediction , 2016 .

[39]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[40]  Bruno Sudret,et al.  Global sensitivity analysis using polynomial chaos expansions , 2008, Reliab. Eng. Syst. Saf..

[41]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[42]  L. Schueremans,et al.  Benefit of splines and neural networks in simulation based structural reliability analysis , 2005 .

[43]  Stefano Marelli,et al.  UQLab: A Framework for Uncertainty Quantification in Matlab , 2014 .

[44]  Thierry A. Mara,et al.  Bayesian sparse polynomial chaos expansion for global sensitivity analysis , 2017 .

[45]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[46]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[47]  V. Kreinovich,et al.  Imprecise probabilities in engineering analyses , 2013 .

[48]  Vladik Kreinovich,et al.  Do we have compatible concepts of epistemic uncertainty , 2016 .

[49]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[50]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[51]  Bruno Sudret,et al.  Global sensitivity analysis using low-rank tensor approximations , 2016, Reliab. Eng. Syst. Saf..

[52]  Bruno Sudret,et al.  Propagation of Uncertainties Modelled by Parametric P-boxes Using Sparse Polynomial Chaos Expansions , 2015 .