Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model

Mapping evapotranspiration at high resolution with internalized calibration (METRIC) is a satellite-based image-processing model for calculating evapotranspiration (ET) as a residual of the surface energy balance. METRIC uses as its foundation the pioneering SEBAL energy balance process developed in The Netherlands by Bastiaanssen, where the near-surface temperature gradients are an indexed function of radiometric surface temperature, thereby eliminating the need for absolutely accurate surface temperature and the need for air-temperature measurements. The surface energy balance is internally calibrated using ground-based reference ET to reduce computational biases inherent to remote sensing-based energy balance and to provide congruency with traditional methods for ET. Slope and aspect functions and temperature lapsing are used in applications in mountainous terrain. METRIC algorithms are designed for relatively routine application by trained engineers and other technical professionals who possess a fami...

[1]  G. D. Fuller,et al.  Evaporation and Transpiration , 1925, Botanical Gazette.

[2]  C. Paulson The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer , 1970 .

[3]  E. K. Webb Profile relationships: The log‐linear range, and extension to strong stability , 1970 .

[4]  N. Majumdar,et al.  Prediction of direct solar radiation for low atmospheric turbidity , 1972 .

[5]  J. Monteith,et al.  Boundary Layer Climates. , 1979 .

[6]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[7]  James L. Wright,et al.  New Evapotranspiration Crop Coefficients , 1982 .

[8]  W. Brutsaert Evaporation into the atmosphere , 1982 .

[9]  J. L. Barker,et al.  Landsat MSS and TM post-calibration dynamic ranges , 1986 .

[10]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[11]  R. Granger,et al.  Evaporation from natural nonsaturated surfaces , 1989 .

[12]  G. E. Wukelic,et al.  Radiometric calibration of Landsat Thematic Mapper Thermal Band , 1989 .

[13]  R. Allen,et al.  Evapotranspiration and Irrigation Water Requirements , 1990 .

[14]  J. Garrison,et al.  Estimation of precipitable water over the United States for application to the division of solar radiation into its direct and diffuse components , 1990 .

[15]  William A. Beckman,et al.  Solar Engineering of Thermal Processes, 2nd ed. , 1994 .

[16]  M. Wigmosta,et al.  A distributed hydrology-vegetation model for complex terrain , 1994 .

[17]  M. S. Moran,et al.  Surface energy balance estimates at local and regional scales using optical remote sensing from an aircraft platform and atmospheric data collected over semiarid rangelands , 1994 .

[18]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[19]  W. Bastiaanssen Regionalization of surface flux densities and moisture indicators in composite terrain. A remote sensing approach under clear skies in Mediterranean climates. , 1995 .

[20]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature [Agric. For. Meteorol., 77 (1995) 263–293]☆ , 1996 .

[21]  Richard G. Allen,et al.  Assessing Integrity of Weather Data for Reference Evapotranspiration Estimation , 1996 .

[22]  R. Qualls,et al.  Effect of Vegetation Density on the Parameterization of Scalar Roughness to Estimate Spatially Distributed Sensible Heat Fluxes , 1996 .

[23]  K. Mitchell,et al.  Assessment of the Land Surface and Boundary Layer Models in Two Operational Versions of the NCEP Eta Model Using FIFE Data , 1997 .

[24]  James L. Wright,et al.  Translating Wind Measurements from Weather Stations to Agricultural Crops , 1997 .

[25]  L. S. Pereira,et al.  Crop evapotranspiration : guidelines for computing crop water requirements , 1998 .

[26]  W. Bastiaanssen,et al.  A remote sensing surface energy balance algorithm for land (SEBAL). , 1998 .

[27]  W. Bastiaanssen Remote sensing in water resources management: the state of the art. , 1998 .

[28]  A. Holtslag,et al.  A remote sensing surface energy balance algorithm for land (SEBAL)-1. Formulation , 1998 .

[29]  Gail P. Anderson,et al.  MODTRAN4 radiative transfer modeling for atmospheric correction , 1999, Optics & Photonics.

[30]  W. Bastiaanssen SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey , 2000 .

[31]  R. Granger Satellite-derived estimates of evapotranspiration in the Gediz basin , 2000 .

[32]  W. Bastiaanssen,et al.  Evapotranspiration on the Watershed Scale Using the SEBAL Model and Landsat Images , 2001 .

[33]  R. Trezza Evapotranspiration Using a Satellite-Based Surface Energy Balance with Standardized Ground Control , 2002 .

[34]  A. Suleiman,et al.  Modeling Soil Water Redistribution during Second‐Stage Evaporation , 2003 .

[35]  M. Tasumi Progress in operational estimation of regional evapotranspiration using satellite imagery , 2003 .

[36]  B. Markham,et al.  Revised Landsat-5 TM radiometric calibration procedures and postcalibration dynamic ranges , 2003, IEEE Trans. Geosci. Remote. Sens..

[37]  Martha C. Anderson,et al.  A Multiscale Remote Sensing Model for Disaggregating Regional Fluxes to Micrometeorological Scales , 2004 .

[38]  Jan M. H. Hendrickx,et al.  Strength of landmine signatures under different soil conditions: implications for sensor fusion , 2005, Int. J. Syst. Sci..

[39]  M. Tasumi A Review of Evaporation Research on Japanese Lakes , 2005 .

[40]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[41]  R. Allen,et al.  Evaporation from American Falls Reservoir in Idaho via a Combination of Bowen Ratio and Eddy Covariance , 2005 .

[42]  I. A. Walter,et al.  The ASCE standardized reference evapotranspiration equation , 2005 .

[43]  James L. Wright,et al.  Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. , 2005 .

[44]  R. Allen,et al.  Benefits From Tying Satellite‐Based Energy Balance To Reference Evapotranspiration , 2006 .

[45]  James L. Wright,et al.  Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications , 2007 .

[46]  R. Allen,et al.  At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance , 2008 .