A reinforced polyaza[n.n]paracyclophane containing piperazine rings

The new [n.n]paraazacyclophane 3,7,10,14,21,25,28,32-octaazapentacyclo[32.2.27,10.216,19.225,28]tetratetraconta-1(37),16(41),17,19(40),34(38),35-hexaene (L) has been prepared. Its protonation has been studied by means of potentiometry and direct microcalorimetry in 0.15 mol dm–3 NaClO4 at 298.1 K. A NMR analysis shows that protons bind alternately at both sides of L, the benzylic nitrogens being the first sites to be protonated. From dynamic variable-temperature NMR analysis an activation enthalpy of 61(2) kJ mol–1 has been derived for the chair–chair interconversion of the piperazine ring. The entropy is almost negligible. Compound L forms with Cu2+ in aqueous solution complexes [Cu(H3L)]3+ and [Cu2L]4+ with stability constants log βCuH3L= 33.20(6) and log βCu2L= 16.6(1) in 0.15 mol dm–3 NaClO4 at 298.1 K, respectively. The low stability of the binuclear complex is attributed to the energy loss due to interconversion between the chair and boat conformers of the piperazine moieties. The interaction of Pd2+ with L has been monitored by NMR analysis. The spectral features show formation of strong binuclear complexes with the involvement of all eight nitrogens of the macrocycle.

[1]  A. Bianchi,et al.  Synthesis and Selectivity in Metal Ion Coordination of the New Ligands 1,4,7-Trimethyl-1,7-bis(4-carboxybenzyl)-1,4,7-triazaheptane (L) and 1,4,7,16,19,22-Hexamethyl-1,4,7,16,19,22-hexaaza[9.9]paracyclophane (L1). Crystal Structures of [PdLH2Cl]NO3.cntdot.3H2O and [Cu2L1Cl2](BPh4)(ClO4).cntdot.CH3CN , 1995 .

[2]  H. Toftlund,et al.  Binuclear complexes of a new hexadentate macrocyclic ligand. The crystal and molecular structure of [LCu2(CH3CO2)2](ClO4)2·5H2O , 1993 .

[3]  E. Garcı́a-España,et al.  An efficient synthesis of polyaza[n]paracyclophanes , 1993 .

[4]  A. Bianchi,et al.  Thermodynamic and structural properties of palladium(II) polynuclear complexes of azamacrocycles. Crystal structure of the [Pd2([24]aneN8)] (ClO4)4 complex , 1993 .

[5]  A. Bianchi,et al.  Thermodynamic aspects of the polyazacycloalkane complexes with cations and anions , 1991 .

[6]  G. Chang,et al.  Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics , 1990 .

[7]  Arthur E. Martell,et al.  Ligand design for selective complexation of metal ions in aqueous solution , 1989 .

[8]  R. Hancock,et al.  The synthesis of complexes of novel structurally reinforced tetraaza-macrocyclic ligands of high ligand field strength. A structural and molecular mechanics study , 1989 .

[9]  R. Hancock,et al.  More rigid macrocyclic ligands that show metal ion size-based selectivity. Crystallographic, molecular mechanics, and formation constant study of the complexes of bridged cyclen , 1988 .

[10]  P. Gans,et al.  SUPERQUAD: an improved general program for computation of formation constants from potentiometric data , 1985 .

[11]  D. Stephenson,et al.  Automated analysis of high-resolution NMR spectra. I. Principles and computational strategy , 1980 .

[12]  C. N. Reilley,et al.  Chemical shifts and protonation shifts in carbon-13 nuclear magnetic resonance studies of aqueous amines , 1975 .

[13]  D. E. Goldberg,et al.  Protonation and coordination with copper(II) of 1,4-bis-(3-aminopropyl)-piperazine , 1969 .

[14]  F. Rossotti,et al.  Potentiometric titrations using Gran plots: A textbook omission , 1965 .

[15]  S. Castellano,et al.  ANALYSIS OF NMR SPECTRA BY LEAST SQUARES , 1964 .

[16]  R. M. Izatt,et al.  A CALORIMETRIC STUDY OF THE HEAT OF IONIZATION OF WATER AT 25°1a , 1963 .

[17]  A. Bianchi,et al.  Basicity properties of a novel azaparacyclophane receptor and its acyclic precursor: a thermodynamic and structural approach , 1995 .

[18]  E. Garcı́a-España,et al.  Aqueous electrochemistry of mono- and bi-nuclear copper(II) complexes with polyaza[n]paracyclophane ligands , 1995 .

[19]  A. Bianchi,et al.  Protonation tendencies of azaparacyclophanes. A thermodynamic and NMR study , 1994 .

[20]  A. Bianchi,et al.  Synthesis, protonation and co-ordination abilities of the open-chain polyamine 4,8,11,15-tetraazaoctadecane-1,18-diamine , 1994 .

[21]  K. Rissanen,et al.  An unusual copper(I) complex of a new macrocyclic ligand , 1994 .

[22]  V. Fusi,et al.  A giant-size azamacrocycle: synthesis and crystal structure of its dinuclear cadmium complex , 1994 .

[23]  A. Bianchi,et al.  Mono- and bi-nuclear copper(II) complexes of azaparacyclophanes with a single aromatic spacer. Crystal structure of [Cu2L2Cl4]·1.5H2O (L2= 2,5,8, 11-tetraaza[12]paracyclophane) , 1994 .

[24]  E. Garcı́a-España,et al.  Polyazacyclophanes. 2,6,9,13-Tetraaza[14] paracyclophane as a cationic and anionic receptor , 1993 .

[25]  K. Rissanen,et al.  12,52,92,132-Tetranitro-1,5,9,13(1,3)-tetrabenzena-3,7,11,15(1,4)-tetrapiperazinacyclo-hexadecaphane, a new host compound , 1993 .

[26]  R. Hancock,et al.  Open-chain polyamine ligands with more rigid double connecting bridges. Study of their metal ion selectivities by molecular mechanics calculation, crystallography, and thermodynamics , 1990 .

[27]  R. Hancock,et al.  Crystallographic and molecular mechanics study of the copper perchlorate complex of a larger reinforced macrocycle , 1990 .

[28]  A. Bianchi,et al.  Low-spin six-co-ordinate cobalt(II) complexes. A solution study of tris(violurato)cobaltate(II) ions , 1988 .

[29]  P. Moore,et al.  Synthesis and co-ordination chemistry of two penta-azamacrocycles containing a 1,4-piperazine backbone. Crystal structure determinations of 6,12-dioxo-1,5,13,17,22-penta-azatricyclo[15.2.2.17,11]docosa-7(22),8,10-triene and 1,5,13,17,22-penta-azatricyclo[15.2.2.17,11]docosa-7(22),8,10-trienenickel(I , 1988 .

[30]  K. Wainwright,et al.  Structurally reinforced cyclen: a rigidly trans-co-ordinating twelve-membered macrocycle , 1982 .

[31]  David R. Williams,et al.  Metal-ligand complexes involved in rheumatoid arthritis—IV: Formation constant and species distribution considerations for copper(II) -cystinate, -oxidised penicillaminate and -oxidised glutathionate interactions and considerations of the action of penicillamine in vivo☆ , 1978 .

[32]  A. Sabatini,et al.  Nickel(II), copper(II) and zinc(II) complexes of 1,1,1-tris(aminomethyl)propane. A calculation procedure of stepwise formation constants and their standard errors from the Values Obtained for the Cumulative Equilibria , 1977 .

[33]  M. Paabo,et al.  Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) scale and the operational pH in heavy water , 1968 .

[34]  G. Gran Determination of the equivalence point in potentiometric titrations. Part II , 1952 .