Isospin dependence of nucleon effective masses in neutron-rich matter

[1]  Bao-An Li,et al.  Nucleon effective E-mass in neutron-rich matter from the Migdal–Luttinger jump , 2015, 1512.03370.

[2]  Bao-An Li,et al.  Symmetry energy of cold nucleonic matter within a relativistic mean field model encapsulating effects of high-momentum nucleons induced by short-range correlations , 2015, 1509.09290.

[3]  N. Kaiser,et al.  Microscopic optical potential for exotic isotopes from chiral effective field theory , 2015, 1509.07126.

[4]  Lie-Wen Chen,et al.  Isospin splitting of the nucleon effective mass from giant resonances in 208 Pb , 2015, 1507.04675.

[5]  M. Famiano,et al.  Probing effective nucleon masses with heavy-ion collisions , 2014, 1406.4546.

[6]  Bao-An Li,et al.  Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter , 2015, 1503.01167.

[7]  Bao-An Li,et al.  Neutron-proton effective mass splitting in neutron-rich matter and its impacts on nuclear reactions , 2015, 1503.00370.

[8]  O. Hen,et al.  Correlated fermions in nuclei and ultracold atomic gases , 2014, 1407.8175.

[9]  Bao-An Li,et al.  Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model , 2014, 1403.5577.

[10]  W. Brooks,et al.  Momentum sharing in imbalanced Fermi systems , 2014, Science.

[11]  O. Hen,et al.  Kinetic symmetry energy of nucleonic matter with tensor correlations , 2014, 1408.0772.

[12]  Bao-An Li,et al.  Topical issue on nuclear symmetry energy , 2014 .

[13]  A. Polls,et al.  Density and isospin-asymmetry dependence of high-momentum components , 2013, 1312.7307.

[14]  F. Sammarruca Microscopic approach to the nucleon-nucleon effective interaction and nucleon-nucleon scattering in symmetric and isospin-asymmetric nuclear matter , 2013, 1307.5373.

[15]  Bao-An Li,et al.  Constraining the neutron–proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density , 2013, 1304.3368.

[16]  A. Schwenk,et al.  Neutron matter from chiral effective field theory interactions , 2013, 1304.2212.

[17]  S. Gandolfi,et al.  Quantum Monte Carlo calculations with chiral effective field theory interactions. , 2013, Physical review letters.

[18]  Pei Wang,et al.  Three-body force effect on nucleon momentum distributions in asymmetric nuclear matter within the framework of the extended Brueckner-Hartree-Fock approach , 2013, 1301.3218.

[19]  A. Schwenk,et al.  Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory. , 2012, Physical review letters.

[20]  Chang Xu,et al.  Single-nucleon potential decomposition of the nuclear symmetry energy , 2011, 1112.2936.

[21]  Chang Xu,et al.  Analytical relations between nuclear symmetry energy and single-nucleon potentials in isospin asymmetric nuclear matter , 2010, 1004.4403.

[22]  Chang Xu,et al.  Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials , 2010 .

[23]  D. Jin,et al.  Verification of universal relations in a strongly interacting Fermi gas. , 2010, Physical review letters.

[24]  P. Hannaford,et al.  Universal behavior of pair correlations in a strongly interacting Fermi gas. , 2010, Physical review letters.

[25]  A. Gezerlis,et al.  Low-density neutron matter , 2009, 0911.3907.

[26]  Astronomy,et al.  Depletion of the nuclear Fermi sea , 2009, 0904.2183.

[27]  U. Meißner,et al.  Ground-state energy of dilute neutron matter at next-to-leading order in lattice chiral effective field theory , 2008, 0812.3653.

[28]  Shina Tan Large momentum part of a strongly correlated Fermi gas , 2008 .

[29]  Shina Tan Generalized virial theorem and pressure relation for a strongly correlated Fermi gas , 2008, 0803.0841.

[30]  Wei-Zhou Jiang,et al.  Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation , 2007, 0708.2561.

[31]  U. Meißner,et al.  Neutron-proton mass difference in nuclear matter , 2006, nucl-th/0611066.

[32]  Los Alamos National Laboratory,et al.  Dense Matter in Compact Stars: Theoretical Developments and Observational Constraints , 2006, astro-ph/0608360.

[33]  C. Pethick,et al.  Resonant fermi gases with a large effective range. , 2005, Physical review letters.

[34]  Shina Tan Energetics of a strongly correlated Fermi gas , 2005, cond-mat/0505200.

[35]  H. Muther,et al.  Correlations and spectral functions in asymmetric nuclear matter , 2004, Physical Review C.

[36]  Arjan J. Koning,et al.  Local and global nucleon optical models from 1 keV to 200 MeV , 2003 .

[37]  Feng-Shou Zhang,et al.  Isospin dependent Pauli blocking and nucleon mean free path in isospin-asymmetric nuclear matter , 2001 .

[38]  Pieper,et al.  Nuclear transparency to intermediate-energy nucleons from (e,e'p) reactions. , 1992, Physical review. C, Nuclear physics.

[39]  de Jong F,et al.  Conserving relativistic many-body approach: Equation of state, spectral function, and occupation probabilities of nuclear matter. , 1991, Physical review. C, Nuclear physics.

[40]  Mahaux,et al.  Dependence of the Fermi energy upon neutron excess. , 1991, Physical review. C, Nuclear physics.

[41]  Clark,et al.  Global Dirac optical potentials for elastic proton scattering from heavy nuclei. , 1990, Physical review. C, Nuclear physics.

[42]  Baldo,et al.  Nuclear matter properties from a separable representation of the Paris interaction. , 1990, Physical review. C, Nuclear physics.

[43]  C. Mahaux,et al.  Effective masses in relativistic approaches to the nucleon-nucleus mean field. , 1989, Physical review. C, Nuclear physics.

[44]  A. Lejeune,et al.  Nuclear mean field with correlations at finite temperature , 1987 .

[45]  R. Broglia,et al.  Dynamics of the shell model , 1985 .

[46]  D. Meltzer,et al.  Landau parameters and pairing-on the shores of the nuclear Fermi sea , 1982 .

[47]  J. Blaizot,et al.  On the nucleon effective mass in nuclear matter , 1981 .

[48]  E. Krotscheck,et al.  Effective mass enhancement and the imaginary part of the optical potential in nuclear matter , 1981 .

[49]  J. Negele,et al.  Mean free path in a nucleus , 1981 .

[50]  C. Mahaux,et al.  Self-energy in a semirealistic model of nuclear matter , 1981 .

[51]  R. Finlay,et al.  A global optical-model analysis of neutron elastic scattering data , 1979 .

[52]  R. Sartor On the self-consistency requirement in the low density expansion of the optical potential in nuclear matter , 1977 .

[53]  D. M. Patterson,et al.  An energy-dependent Lane-model nucleon-nucleus optical potential , 1976 .

[54]  André Lejeune,et al.  Many Body Theory of Nuclear Matter , 1976 .

[55]  P. Haensel,et al.  Single Particle Potential in Polarized Nuclear Matter , 1974 .

[56]  P. Haensel,et al.  Spin and spin-isospin symmetry energy of nuclear matter. , 1973 .

[57]  J. Dabrowski,et al.  Spin and isospin dependence of the single-particle potential in nuclear matter , 1972 .

[58]  K. Brueckner,et al.  SYMMETRY ENERGY AND THE ISOTOPIC SPIN DEPENDENCE OF THE SINGLE-PARTICLE POTENTIAL IN NUCLEAR MATTER , 1964 .

[59]  A. Lane Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions , 1962 .

[60]  J. M. Luttinger FERMI SURFACE AND SOME SIMPLE EQUILIBRIUM PROPERTIES OF A SYSTEM OF INTERACTING FERMIONS , 1960 .

[61]  N. M. Hugenholtz,et al.  A theorem on the single particle energy in a Fermi gas with interaction , 1958 .

[62]  A. Migdal THE MOMENTUM DISTRIBUTION OF INTERACTING FERMI PARTICLES , 1957 .