Jupiter Thermospheric General Circulation Model (JTGCM): Global structure and dynamics driven by auroral and Joule heating

(including auroral/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for � 40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from � 1200–1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo ASI data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

[1]  Y. Yung Book Review: Atmospheres and ionospheres of the outer planets and their satellites. By S. K. Atreya. Springer-Verlag, Berlin, 1986. 224 pp., $69.50 , 1987 .

[2]  E. A. Mason,et al.  The diffusion of atoms and molecules , 1970 .

[3]  Thomas E. Cravens,et al.  Electron precipitation and related aeronomy of the Jovian thermosphere and ionosphere , 1983 .

[4]  P. Drossart,et al.  Spectro-imaging observations of Jupiter's 2-μm auroral emission. I. H3+ distribution and temperature , 2004 .

[5]  S. F. Bass,et al.  The effects of external material on the chemistry and structure of Saturn's ionosphere , 2000 .

[6]  Roger V. Yelle,et al.  Gravity Waves in Jupiter's Thermosphere , 1997, Science.

[7]  R. Prangé,et al.  On the Existence of Supersonic Jets in the Upper Atmosphere of Jupiter , 1995 .

[8]  R. Dickinson,et al.  Mars thermospheric general circulation model: Calculations for the arrival of Phobos at Mars , 1988 .

[9]  Travis W. Hill,et al.  Inertial limit on corotation , 1979 .

[10]  Nicholas Achilleos,et al.  Supersonic winds in Jupiter's aurorae , 1999, Nature.

[11]  M. McGrath An unusual change in the Jovian Lyman‐alpha bulge , 1991 .

[12]  S. Atreya,et al.  Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment , 1981 .

[13]  M Larsson Dissociative recombination with ion storage rings. , 1997, Annual review of physical chemistry.

[14]  Emma J. Bunce,et al.  Origin of the main auroral oval in Jupiter's coupled magnetosphere–ionosphere system , 2001 .

[15]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[16]  P. Drossart,et al.  Equatorial X-ray Emissions: Implications for Jupiter's High Exospheric Temperatures , 1997, Science.

[17]  T. Hill,et al.  The Jovian auroral oval , 2001 .

[18]  R. Roble,et al.  Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices , 1999 .

[19]  J. Heldmann,et al.  Cold springs in permafrost on Earth and Mars , 2002 .

[20]  A. Dessler Physics of the Jovian Magnetosphere: Coordinate systems , 1983 .

[21]  Denis Grodent,et al.  A self‐consistent model of the Jovian auroral thermal structure , 2001 .

[22]  André Robert,et al.  The Integration of a Low Order Spectral Form of the Primitive Meteorological Equations , 1966 .

[23]  M. Allen,et al.  Hydrocarbon photochemistry in the upper atmosphere of Jupiter. , 1991, Icarus.

[24]  J. Tennyson,et al.  Mid-to-Low Latitude H+3Emission from Jupiter☆ , 1997 .

[25]  R. Vervack,et al.  Structure of Jupiter's upper atmosphere: Predictions for Galileo , 1996 .

[26]  T. Fuller‐Rowell,et al.  Simulations of the upper atmospheres of the terrestrial planets , 2013 .

[27]  J. L. Forand,et al.  Measurement of the branching ratio for the dissociative recombination of H/sub 3//sup +/+e , 1983 .

[28]  A. Eviatar,et al.  Jovian magnetospheric neutral wind and auroral precipitation flux , 1984 .

[29]  D. R. Bates,et al.  Enigma of H3+ dissociative recombination , 1993 .

[30]  J. Fox,et al.  The Chemistry of Hydrocarbon Ions in the Jovian Ionosphere , 1994 .

[31]  D. Strobel,et al.  Heating of Jupiter's Thermosphere by Dissipation of Gravity Waves Due to Molecular Viscosity and Heat Conduction , 1998 .

[32]  A. Broadfoot,et al.  Observations of the Jovian UV aurora by Voyager , 1985 .

[33]  M. D. Smith,et al.  An intense stratospheric jet on Jupiter , 2004, Nature.

[34]  Raymond G. Roble,et al.  A coupled thermosphere/ionosphere general circulation model , 1988 .

[35]  D. Hunten,et al.  The Galileo Probe Mass Spectrometer: Composition of Jupiter's Atmosphere , 1996, Science.

[36]  G. Schubert,et al.  Thermal structure of Jupiter's atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt , 1998 .

[37]  J. H. Waite,et al.  Thermal profiles in the auroral regions of Jupiter , 1993 .

[38]  Denis Grodent,et al.  Jupiter's main auroral oval observed with HST-STIS , 2003 .

[39]  G. Millward,et al.  On the Dynamics of the Jovian Ionosphere and Thermosphere: II. The Measurement of H3+ Vibrational Temperature, Column Density, and Total Emission , 2002 .

[40]  Jonathan Tennyson,et al.  JIM: A time‐dependent, three‐dimensional model of Jupiter's thermosphere and ionosphere , 1998 .

[41]  J. H. Waite,et al.  Detection of H3+ on Jupiter , 1989, Nature.

[42]  T. Cravens Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter , 1987 .

[43]  John C. McConnell,et al.  The upper ionospheres of Jupiter and Saturn , 1991 .

[44]  Sushil K. Atreya,et al.  Book-Review - Atmospheres and Ionospheres of the Outer Planets and Their Satellites , 1986 .

[45]  S. Miller,et al.  Jupiter's thermosphere and ionosphere , 2004 .

[46]  J. H. Waite,et al.  Hubble Space Telescope imaging of Jupiter's UV aurora during the Galileo orbiter mission , 1998 .

[47]  T. Fuller‐Rowell,et al.  A Three-Dimensional Time-Dependent Global Model of the Thermosphere , 1980 .

[48]  J. H. Waite,et al.  A pulsating auroral X-ray hot spot on Jupiter , 2002, Nature.

[49]  Raymond G. Roble,et al.  A thermosphere/ionosphere general circulation model with coupled electrodynamics , 1992 .

[50]  Raymond G. Roble,et al.  An auroral model for the NCAR thermospheric general circulation model (TGCM) , 1987 .

[51]  P. Sigray,et al.  Destruction Rate of H3+ by Low-Energy Electrons Measured in a Storage-Ring Experiment , 1994, Science.

[52]  R. Dickinson,et al.  Venus mesosphere and thermosphere: II. Global circulation, temperature, and density variations , 1986 .

[53]  J. Connerney,et al.  New models of Jupiter's magnetic field constrained by the Io flux tube footprint , 1998 .

[54]  Jonathan Tennyson,et al.  Infrared emissions of H3(+) in the atmosphere of Jupiter in the 2. 1 and 4. 0 micron region , 1990 .

[55]  J. Waite,et al.  Atmospheres in the solar system : comparative aeronomy , 2002 .

[56]  G. Millward,et al.  On the Dynamics of the Jovian Ionosphere and Thermosphere: I. The Measurement of Ion Winds , 2001 .

[57]  G. Schubert,et al.  Ion-Drag Effects of Gravity-Wave Heating and Cooling in Jupiter's Thermosphere , 2000 .

[58]  R. Dickinson,et al.  Venus mesosphere and thermosphere. III - Three-dimensional general circulation with coupled dynamics and composition , 1988 .

[59]  D. Strobel,et al.  On the Temperature of the Jovian Thermosphere , 1973 .

[60]  Jonathan Tennyson,et al.  A baseline spectroscopic study of the infrared auroras of Jupiter , 1997 .

[61]  A. Ingersoll,et al.  Multispectral observations of Jupiter's aurora , 2008 .

[62]  J. H. Waite,et al.  An auroral flare at Jupiter , 2001, Nature.