Sensitive in situ nanothermometer using femtosecond optical tweezers

Abstract. We report the rise in temperature in various liquid media adjacent to a trapped bead. A nonheating laser at 780 nm has been used to optically trap a 500-nm radius polystyrene bead, while a simultaneous irradiation with a copropagating 1560-nm high-repetition-rate femtosecond laser led to temperature rise in various trapping media. Vibrational combination band of the hydroxyl group in the trapping media resulted in high absorption of 1560-nm laser. This, in turn, gave us control over the trapping media temperature at the focus of the optical trap.

[1]  H. Flyvbjerg,et al.  MatLab program for precision calibration of optical tweezers , 2004 .

[2]  Pier Luca Maffettone,et al.  Microrheology with Optical Tweezers: Measuring the relative viscosity of solutions ‘at a glance' , 2015, Scientific Reports.

[3]  David G. Grier,et al.  Evolution of a colloidal critical state in an optical pinning potential landscape , 2002 .

[4]  S W Hell,et al.  Heating by absorption in the focus of an objective lens. , 1998, Optics letters.

[5]  K. Schütze,et al.  Force generation of organelle transport measured in vivo by an infrared laser trap , 1990, Nature.

[6]  E. Mclaughlin,et al.  The excess thermal conductivity and viscosity of hard-sphere mixtures , 1976 .

[7]  C. Braun,et al.  Why is water blue , 1993 .

[8]  T. Scott Refractive index of ethanol-water mixtures and density and refractive index of ethanol-water-ethyl ether mixtures. , 1946, The Journal of physical chemistry.

[9]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[10]  Juan Ortega,et al.  Densities And Refractive-Indexes Of Pure Alcohols As A Function Of Temperature , 1982 .

[11]  R. Yano,et al.  Thermal conductivity measurement of water-ethanol solutions by the laser-induced transient grating method , 1988 .

[12]  D. Goswami,et al.  Controlling local temperature in water using femtosecond optical tweezer. , 2015, Biomedical optics express.

[13]  J. Grolier,et al.  Excess volumes and excess heat capacities of water + ethanol at 298.15 K , 1981 .

[14]  G. C. Benson,et al.  Thermodynamics of aqueous mixtures of nonelectrolytes II. Isobaric heat capacities of water-n-alcohol mixtures at 25°C , 1980 .

[15]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[16]  Ignacio Tinoco,et al.  Temperature control methods in a laser tweezers system. , 2005, Biophysical journal.

[17]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[18]  Juan Ortega,et al.  Densities and refractive indices of pure alcohols as a function of temperature , 2002 .

[19]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[20]  J. Raal,et al.  Measurement of alcohol thermal conductivities using a relative strain-compensated hot-wire method , 1981 .

[21]  Laser pulse heating , 1999, Proceedings of the 1999 Particle Accelerator Conference (Cat. No.99CH36366).

[22]  R. Gordon,et al.  A label-free untethered approach to single-molecule protein binding kinetics. , 2014, Nano letters (Print).

[23]  H. Flyvbjerg,et al.  Power spectrum analysis for optical tweezers , 2004 .