Infinite Series-Parallel Posets: Logic and Languages
暂无分享,去创建一个
[1] Masako Takahashi,et al. The Greatest Fixed-Points and Rational Omega-Tree Languages , 1986, Theor. Comput. Sci..
[2] Jay L. Gischer,et al. The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..
[3] Pascal Weil,et al. A Kleene Iteration for Parallelism , 1998, FSTTCS.
[4] Pascal Weil,et al. Series-Parallel Posets: Algebra, Automata and Languages , 1998, STACS.
[5] Volker Diekert,et al. The Book of Traces , 1995 .
[6] Denis Lapoire,et al. Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.
[7] Paul Gastin,et al. Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..
[8] Wieslaw Zielonka,et al. Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..
[9] Grzegorz Rozenberg,et al. Dependence Graphs , 1995, The Book of Traces.
[10] Anca Muscholl,et al. Deterministic Asynchronous Automata for Infinite Traces , 1993, STACS.
[11] Frank Plumpton Ramsey,et al. On a Problem of Formal Logic , 1930 .
[12] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..
[13] Pascal Weil,et al. Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..
[14] Anca Muscholl,et al. Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..
[15] Paul Gastin,et al. Infinite Traces , 1995, The Book of Traces.
[16] Zoltán Ésik,et al. Shuffle binoids , 1998, RAIRO Theor. Informatics Appl..
[17] Bruno Courcelle,et al. The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..
[18] Paul Gastin,et al. An Extension of Kleene's and Ochmanski's Theorems to Infinite Traces , 1994, Theor. Comput. Sci..
[19] Zoltán Ésik,et al. Series and Parallel Operations on Pomsets , 1999, FSTTCS.
[20] J. Grabowski,et al. On partial languages , 1981, Fundam. Informaticae.