Infinite Series-Parallel Posets: Logic and Languages

We show that a set of uniformly width-bounded infinite series-parallel pomsets is ω-series-rational iff it is axiomatizable in monadic second order logic iff it is ω-recognizable. This extends recent work by Lodaya and Weil on sets of finite series-parallel pomsets in two aspects: It relates their notion of series-rationality to logical concepts, and it generalizes the equivalence of recognizability and series-rationality to infinite series-parallel pomsets.

[1]  Masako Takahashi,et al.  The Greatest Fixed-Points and Rational Omega-Tree Languages , 1986, Theor. Comput. Sci..

[2]  Jay L. Gischer,et al.  The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..

[3]  Pascal Weil,et al.  A Kleene Iteration for Parallelism , 1998, FSTTCS.

[4]  Pascal Weil,et al.  Series-Parallel Posets: Algebra, Automata and Languages , 1998, STACS.

[5]  Volker Diekert,et al.  The Book of Traces , 1995 .

[6]  Denis Lapoire,et al.  Recognizability Equals Monadic Second-Order Definability for Sets of Graphs of Bounded Tree-Width , 1998, STACS.

[7]  Paul Gastin,et al.  Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..

[8]  Wieslaw Zielonka,et al.  Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..

[9]  Grzegorz Rozenberg,et al.  Dependence Graphs , 1995, The Book of Traces.

[10]  Anca Muscholl,et al.  Deterministic Asynchronous Automata for Infinite Traces , 1993, STACS.

[11]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[12]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..

[13]  Pascal Weil,et al.  Series-parallel languages and the bounded-width property , 2000, Theor. Comput. Sci..

[14]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[15]  Paul Gastin,et al.  Infinite Traces , 1995, The Book of Traces.

[16]  Zoltán Ésik,et al.  Shuffle binoids , 1998, RAIRO Theor. Informatics Appl..

[17]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[18]  Paul Gastin,et al.  An Extension of Kleene's and Ochmanski's Theorems to Infinite Traces , 1994, Theor. Comput. Sci..

[19]  Zoltán Ésik,et al.  Series and Parallel Operations on Pomsets , 1999, FSTTCS.

[20]  J. Grabowski,et al.  On partial languages , 1981, Fundam. Informaticae.