Vertical full-colour micro-LEDs via 2D materials-based layer transfer

[1]  J. Kong,et al.  Multiplication of freestanding semiconductor membranes from a single wafer by advanced remote epitaxy , 2022, 2204.08002.

[2]  Jingyu Sun,et al.  Graphene-driving strain engineering to enable strain-free epitaxy of AlN film for deep ultraviolet light-emitting diode , 2022, Light, science & applications.

[3]  Rong Zhang,et al.  Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix , 2021, Nature Nanotechnology.

[4]  Heung Cho Ko,et al.  Highly Efficient Full‐Color Inorganic LEDs on a Single Wafer by Using Multiple Adhesive Bonding , 2021, Advanced Materials Interfaces.

[5]  Jong-Hyun Ahn,et al.  Impact of 2D-3D Heterointerface on Remote Epitaxial Interaction through Graphene. , 2021, ACS nano.

[6]  C. Packard,et al.  Controlled spalling-based mechanical substrate exfoliation for III-V solar cells: A review , 2021, Solar Energy Materials and Solar Cells.

[7]  Lai Wang,et al.  Transfer-printed, tandem microscale light-emitting diodes for full-color displays , 2021, Proceedings of the National Academy of Sciences.

[8]  D. Chung,et al.  Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses , 2021, Nature Photonics.

[9]  Z. Gong Layer-Scale and Chip-Scale Transfer Techniques for Functional Devices and Systems: A Review , 2021, Nanomaterials.

[10]  X. An,et al.  Vertically stacked RGB LEDs with optimized distributed Bragg reflectors. , 2020, Optics letters.

[11]  Bizhong Xia,et al.  Full-Color Realization of Micro-LED Displays , 2020, Nanomaterials.

[12]  Baoguo Zhang,et al.  Damage-Free Transfer of GaN-Based Light-Emitting Devices and Reuse of Sapphire Substrate , 2020 .

[13]  Tao Zhan,et al.  Augmented Reality and Virtual Reality Displays: Perspectives and Challenges , 2020, iScience.

[14]  Hussein S. El-Ghoroury,et al.  Monolithic and heterogeneous integration of RGB micro-LED arrays with pixel-level optics array and CMOS image processor to enable small form-factor display applications , 2020, AR, VR, MR.

[15]  D. Muller,et al.  Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy , 2020, Nature Nanotechnology.

[16]  A. Michon,et al.  Remote epitaxy using graphene enables growth of stress-free GaN , 2019, Nanotechnology.

[17]  Sang-Hoon Bae,et al.  Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices , 2019, Nature Electronics.

[18]  Zhizhong Chen,et al.  Carrier lifetime enhancement in halide perovskite via remote epitaxy , 2019, Nature Communications.

[19]  Zhongfan Liu,et al.  Improved Epitaxy of AlN Film for Deep‐Ultraviolet Light‐Emitting Diodes Enabled by Graphene , 2019, Advanced materials.

[20]  Sanghyeon Kim,et al.  Hybrid Full-Color Inorganic Light-Emitting Diodes Integrated on a Single Wafer Using Selective Area Growth and Adhesive Bonding , 2018, ACS Photonics.

[21]  V. Marinov 52‐4: Laser‐Enabled Extremely‐High Rate Technology for µLED Assembly , 2018 .

[22]  H. Lee,et al.  Monolithic Red/Green/Blue Micro-LEDs With HBR and DBR Structures , 2018, IEEE Photonics Technology Letters.

[23]  Sanghyeon Kim,et al.  Monolithic integration of AlGaInP-based red and InGaN-based green LEDs via adhesive bonding for multicolor emission , 2017, Scientific Reports.

[24]  Jared M. Johnson,et al.  Remote epitaxy through graphene enables two-dimensional material-based layer transfer , 2017, Nature.

[25]  M. Meitl,et al.  Emissive displays with transfer-printed assemblies of 8 μm × 15 μm inorganic light-emitting diodes , 2017 .

[26]  François Templier,et al.  Processing and characterization of high resolution GaN/InGaN LED arrays at 10 micron pitch for micro display applications , 2017, OPTO.

[27]  I. Kymissis,et al.  Micro‐LED Technologies and Applications , 2016 .

[28]  Xin Li,et al.  Large-Area Two-Dimensional Layered Hexagonal Boron Nitride Grown on Sapphire by Metalorganic Vapor Phase Epitaxy , 2016 .

[29]  Abdallah Ougazzaden,et al.  Wafer-scale controlled exfoliation of metal organic vapor phase epitaxy grown InGaN/GaN multi quantum well structures using low-tack two-dimensional layered h-BN , 2016 .

[30]  Z. Alpaslan,et al.  26.1: Invited Paper: Quantum Photonic Imager (QPI): A Novel Display Technology that Enables more than 3D Applications , 2015 .

[31]  Bong-Joong Kim,et al.  Vertically stacked color tunable light-emitting diodes fabricated using wafer bonding and transfer printing. , 2014, ACS applied materials & interfaces.

[32]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[33]  John A Rogers,et al.  High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. , 2012, Small.

[34]  Hongxing Jiang,et al.  III-Nitride full-scale high-resolution microdisplays , 2011 .

[35]  John A Rogers,et al.  Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting , 2011, Proceedings of the National Academy of Sciences.

[36]  E. J. Haverkamp,et al.  Wafer reuse for repeated growth of III–V solar cells , 2010 .

[37]  Y. S. Wu,et al.  Effects of Laser Sources on Damage Mechanisms and Reverse-Bias Leakages of Laser Lift-Off GaN-Based LEDs , 2009 .

[38]  R. Dupuis,et al.  Control of Quantum-Confined Stark Effect in InGaN-Based Quantum Wells , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[39]  Stephen R. Forrest,et al.  Measuring the Efficiency of Organic Light‐Emitting Devices , 2003 .

[40]  Carl Machover,et al.  Virtual reality , 1994, IEEE Computer Graphics and Applications.