Packing geometry of human cone photoreceptors: variation with eccentricity and evidence for local anisotropy.

Disorder in the packing geometry of the human cone mosaic is believed to help alleviate spatial aliasing effects. To characterize cone packing geometry, we gathered positions of cone inner segments at seven locations along four primary and two oblique meridians in an adult human retina. We generated statistical descriptors based on the distribution of distances and angles to Voronoi neighbors. Parameters of a compressed-jittered model were fit to the actual mosaic. Local anisotropies were investigated using correlograms. We find that (1) median distance between Voronoi neighbors increases with eccentricity, but the minimum distance is constant (6-8 microns) across peripheral retina; (2) the cone mosaic is least compressed and jittered at the edge of the foveal rod-free zone; (3) disorder in the foveal center resembles that described by Pum et al. (1990); (4) cone spacing is 10-15% less in one direction than in the orthogonal direction; and (5) cone spacing is greater in the radial direction (along meridians) than in the tangential direction (along lines of isoeccentricity). The nearly constant minimum distance implies that high spatial frequencies may be sampled even in peripheral retina. Local anisotropy of the cone mosaic is discussed in relation to the growth of the primate retina during development and to the orientation biases of retinal ganglion cells.

[1]  Nicoletta Berardi,et al.  Visual field asymmetries in pattern discrimination: A sign of asymmetry in cortical visual field representation? , 1991, Vision Research.

[2]  I P Krebs,et al.  Discontinuities of the external limiting membrane in the fovea centralis of the primate retina. , 1989, Experimental eye research.

[3]  Interphotoreceptor contacts at the inner segment level in primate retinas , 1989, Brain Research.

[4]  W. Levick,et al.  Analysis of orientation bias in cat retina , 1982, The Journal of physiology.

[5]  E. Raviola,et al.  Gap junctions between photoreceptor cells in the vertebrate retina. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Wolf Krebs Dvm adj.,et al.  Primate Retina and Choroid , 1991, Springer New York.

[7]  E. Raviola,et al.  Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits , 1975, The Journal of cell biology.

[8]  J. Hirsch,et al.  Comparison of human and monkey retinal photoreceptor sampling mosaics. , 1989, Visual neuroscience.

[9]  Infrared holography with geletin films (A) , 1987 .

[10]  R. W. Rodieck,et al.  Parasol and midget ganglion cells of the human retina , 1985, The Journal of comparative neurology.

[11]  A. Leventhal,et al.  Structural basis of orientation sensitivity of cat retinal ganglion cells , 1983, The Journal of comparative neurology.

[12]  P K Ahnelt,et al.  Iso-orientation areas in the foveal cone mosaic , 1990, Visual Neuroscience.

[13]  W. H. Miller,et al.  Photoreceptor diameter and spacing for highest resolving power. , 1977, Journal of the Optical Society of America.

[14]  T Ohtsuka,et al.  Telodendrial contact of HRP‐filled photoreceptors in the turtle retina: Pathways of photoreceptor coupling , 1990, The Journal of comparative neurology.

[15]  D. Williams,et al.  Cone spacing and the visual resolution limit. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[16]  J. Pettigrew,et al.  Cone photoreceptors lacking oil droplets in the retina of the echinda, Tachyglossus aculeatus (Monotremata) , 1991, Visual Neuroscience.

[17]  Stelios C. Orphanoudakis,et al.  Image reconstruction based on human and monkey cone mosaics , 1990, J. Vis. Commun. Image Represent..

[18]  L A Temme,et al.  Peripheral Visual Field is Radially Organized , 1985, American journal of optometry and physiological optics.

[19]  T. R. J. Bossomaier,et al.  Irregularity and aliasing: Solution? , 1985, Vision Research.

[20]  C A Curcio,et al.  Developmental redistribution of photoreceptors across the Macaca nemestrina (pigtail macaque) retina , 1990, The Journal of comparative neurology.

[21]  W. H. Miller,et al.  Telephoto lens system of falconiform eyes , 1978, Nature.

[22]  A. Milam,et al.  Distribution and morphology of human cone photoreceptors stained with anti‐blue opsin , 1991, The Journal of comparative neurology.

[23]  D. A. Burkhardt,et al.  Telodendrites of cone photoreceptors: Structure and probable function , 1986, The Journal of comparative neurology.

[24]  H. Wässle,et al.  The mosaic of nerve cells in the mammalian retina , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  A J Ahumada,et al.  Cone sampling array models. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[26]  Christine A. Curcio,et al.  A whole mount method for sequential analysis of photoreceptor and ganglion cell topography in a single retina , 1987, Vision Research.

[27]  W. H. Miller,et al.  Does cone positional disorder limit resolution? , 1987, Journal of the Optical Society of America. A, Optics and image science.

[28]  J Rovamo,et al.  Resolution of gratings oriented along and across meridians in peripheral vision. , 1982, Investigative ophthalmology & visual science.

[29]  Y. Chino,et al.  Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys , 1990, Visual Neuroscience.

[30]  J. Yellott Spectral analysis of spatial sampling by photoreceptors: Topological disorder prevents aliasing , 1982, Vision Research.

[31]  D. Baylor,et al.  Receptive fields of cones in the retina of the turtle , 1971, The Journal of physiology.

[32]  A. Hendrickson,et al.  Distribution of cones in human and monkey retina: individual variability and radial asymmetry. , 1987, Science.

[33]  A. Leventhal,et al.  Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially , 1986, Brain Research.

[34]  J. Hirsch,et al.  Quality of the primate photoreceptor lattice and limits of spatial vision , 1984, Vision Research.

[35]  N Drasdo,et al.  Non-linear projection of the retinal image in a wide-angle schematic eye. , 1974, The British journal of ophthalmology.

[36]  W. Krebs,et al.  Primate Retina and Choroid: Atlas of Fine Structure in Man and Monkey , 1991 .

[37]  H. Kolb,et al.  Midget ganglion cells of the parafovea of the human retina: A Study by electron microscopy and serial section reconstructions , 1991, The Journal of comparative neurology.

[38]  Christine A. Curcio,et al.  The spatial resolution capacity of human foveal retina , 1989, Vision Research.

[39]  R. Scobey,et al.  A horizontal stripe of displacement sensitivity in the human visual field , 1991, Vision Research.

[40]  D M Levi,et al.  Peripheral hyperacuity: isoeccentric bisection is better than radial bisection. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[41]  Jay M. Enoch,et al.  Vertebrate photoreceptor optics , 1981 .

[42]  W. Charman,et al.  Off-axis image quality in the human eye , 1981, Vision Research.

[43]  R. F. Hess,et al.  The contrast sensitivity gradient across the human visual field: With emphasis on the low spatial frequency range , 1989, Vision Research.

[44]  B. Borwein The Retinal Receptor: A Description , 1981 .

[45]  R. Shapley,et al.  Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. , 1987, Journal of neurophysiology.

[46]  C. Lerea,et al.  α transducin is present in blue-, green-, and red-sensitive cone photoreceptors in the human retina , 1989, Neuron.

[47]  A. Hodgkin,et al.  Electrical coupling between cones in turtle retina. , 1979, The Journal of physiology.

[48]  F. M. de Monasterio,et al.  Regularity and Structure of the Spatial Pattern of Blue Cones of Macaque Retina , 1985 .

[49]  P Sterling,et al.  Cone receptive field in cat retina computed from microcircuitry , 1990, Visual Neuroscience.

[50]  A. Ringvold,et al.  Lateral cell connections at the inner segment level of human parafoveal photoreceptors , 1989, Acta ophthalmologica.

[51]  David Williams Topography of the foveal cone mosaic in the living human eye , 1988, Vision Research.

[52]  J. M. Hopkins,et al.  Cone connections of the horizontal cells of the rhesus monkey’s retina , 1987, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[53]  H. Kolb,et al.  Identification of pedicles of putative blue‐sensitive cones in the human retina , 1990, The Journal of comparative neurology.

[54]  David Williams Aliasing in human foveal vision , 1985, Vision Research.

[55]  A. Hendrickson,et al.  Human photoreceptor topography , 1990, The Journal of comparative neurology.

[56]  M. Banks,et al.  The effects of contrast, spatial scale, and orientation on foveal and peripheral phase discrimination , 1991, Vision Research.

[57]  R A Normann,et al.  Direct excitatory interactions between cones of different spectral types in the turtle retina. , 1984, Science.

[58]  C. Curcio,et al.  Topography of ganglion cells in human retina , 1990, The Journal of comparative neurology.

[59]  R. W. Rodieck The density recovery profile: A method for the analysis of points in the plane applicable to retinal studies , 1991, Visual Neuroscience.

[60]  Terry Bossomaier,et al.  Optical image quality and the cone mosaic. , 1986, Science.

[61]  J. Odom,et al.  Distribution of carbonic anhydrase among human photoreceptors. , 1990, Investigative ophthalmology & visual science.

[62]  N J Coletta,et al.  Psychophysical estimate of extrafoveal cone spacing. , 1987, Journal of the Optical Society of America. A, Optics and image science.