MECHANISMS FOR DISCRETE OPTIMIZATION

[1]  Benny Moldovanu,et al.  Goethe's Second‐Price Auction , 1998, Journal of Political Economy.

[2]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[3]  Deborah Estrin,et al.  Sharing the “cost” of multicast trees: an axiomatic analysis , 1997, TNET.

[4]  Noam Nisan,et al.  Truthful approximation mechanisms for restricted combinatorial auctions , 2008, Games Econ. Behav..

[5]  Kenneth Steiglitz,et al.  Frugality in path auctions , 2004, SODA '04.

[6]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[7]  William L. Maxwell,et al.  Theory of scheduling , 1967 .

[8]  Micah Adler,et al.  Pricing multicasting in more practical network models , 2002, SODA '02.

[9]  Felix Wu,et al.  Incentive-compatible online auctions for digital goods , 2002, SODA '02.

[10]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[11]  E. Maskin,et al.  Monopoly with Incomplete Information , 1984 .

[12]  Éva Tardos,et al.  Truthful mechanisms for one-parameter agents , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[13]  Tony Ballardie,et al.  Core based trees , 1993 .

[14]  Éva Tardos,et al.  Frugal path mechanisms , 2002, SODA '02.

[15]  Noam Nisan,et al.  Computationally feasible VCG mechanisms , 2000, EC '00.

[16]  Vijay V. Vazirani,et al.  Applications of approximation algorithms to cooperative games , 2001, STOC '01.

[17]  Jean-Jacques Laffont,et al.  A complete solution to a class of principal-agent problems with an application to the control of a self-managed firm , 1984 .

[18]  Amos Fiat,et al.  Competitive generalized auctions , 2002, STOC '02.

[19]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[20]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[21]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[22]  Kunal Talwar,et al.  The Price of Truth: Frugality in Truthful Mechanisms , 2003, STACS.

[23]  A. Gibbard Manipulation of Voting Schemes: A General Result , 1973 .

[24]  David B. Shmoys,et al.  A Polynomial Approximation Scheme for Scheduling on Uniform Processors: Using the Dual Approximation Approach , 1988, SIAM J. Comput..

[25]  Éva Tardos,et al.  An approximate truthful mechanism for combinatorial auctions with single parameter agents , 2003, SODA '03.

[26]  K. Arrow Social Choice and Individual Values , 1951 .

[27]  Adam Meyerson,et al.  Online facility location , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[28]  R. McAfee,et al.  Multidimensional incentive compatibility and mechanism design , 1988 .

[29]  M. Satterthwaite Strategy-proofness and Arrow's conditions: Existence and correspondence theorems for voting procedures and social welfare functions , 1975 .

[30]  Sanjeev Khanna,et al.  A PTAS for Minimizing Weighted Completion Time on Uniformly Related Machines , 2001, ICALP.

[31]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[32]  Deborah Estrin,et al.  The PIM architecture for wide-area multicast routing , 1996, TNET.

[33]  David R. Cheriton,et al.  IP multicast channels: EXPRESS support for large-scale single-source applications , 1999, SIGCOMM '99.

[34]  R. Myerson,et al.  Regulating a Monopolist with Unknown Costs , 1982 .

[35]  Prabhakar Raghavan,et al.  Randomized rounding: A technique for provably good algorithms and algorithmic proofs , 1985, Comb..

[36]  Joan Feigenbaum,et al.  Sharing the Cost of Multicast Transmissions , 2001, J. Comput. Syst. Sci..

[37]  Jerry R. Green,et al.  Characterization of Satisfactory Mechanisms for the Revelation of Preferences for Public Goods , 1977 .

[38]  Teofilo F. Gonzalez,et al.  Preemptive Scheduling of Uniform Processor Systems , 1978, JACM.

[39]  J. Mirrlees An Exploration in the Theory of Optimum Income Taxation an Exploration in the Theory of Optimum Income Taxation L Y 2 , 2022 .

[40]  Shui Lam,et al.  A Level Algorithm for Preemptive Scheduling , 1977, J. ACM.

[41]  Andrew V. Goldberg,et al.  Competitive auctions and digital goods , 2001, SODA '01.

[42]  S. Rosen,et al.  Monopoly and product quality , 1978 .

[43]  Robert J. Weber,et al.  How the U.S. Treasury Should Auction Its Debt , 1992 .

[44]  Joan Feigenbaum,et al.  Approximation and collusion in multicast cost sharing , 2003, EC '03.

[45]  Christophe Diot,et al.  Simple mu lticast: A design for sim-ple, low-overhead multicast , 1999 .

[46]  Joan Feigenbaum,et al.  A BGP-based mechanism for lowest-cost routing , 2002, PODC '02.

[47]  Martin Skutella,et al.  Cooperative facility location games , 2000, SODA '00.

[48]  E. H. Clarke Multipart pricing of public goods , 1971 .

[49]  Stephen E. Deering,et al.  Multicast routing in datagram internetworks and extended LANs , 1990, TOCS.

[50]  Joan Feigenbaum,et al.  Hardness Results for Multicast Cost Sharing , 2002, FSTTCS.

[51]  Jan Karel Lenstra,et al.  Approximation algorithms for scheduling unrelated parallel machines , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[52]  Prabhakar Raghavan,et al.  Probabilistic construction of deterministic algorithms: Approximating packing integer programs , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[53]  Noam Nisan,et al.  Competitive analysis of incentive compatible on-line auctions , 2000, EC '00.

[54]  Subhash Suri,et al.  Vickrey prices and shortest paths: what is an edge worth? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[55]  Loretta J. Mester,et al.  Uniform-Price Auctions : Update of the Treasury Experience , 1998 .

[56]  Sven de Vries,et al.  Linear Programming and Vickrey Auctions , 2001 .