Related assemblages of sulphate-reducing bacteria associated with ultradeep gold mines of South Africa and deep basalt aquifers of Washington State.

We characterized the diversity of sulphate-reducing bacteria (SRB) associated with South African gold mine boreholes and deep aquifer systems in Washington State, USA. Sterile cartridges filled with crushed country rock were installed on two hydrologically isolated and chemically distinct sites at depths of 3.2 and 2.7 km below the land surface (kmbls) to allow development of biofilms. Enrichments of sulphate-reducing chemolithotrophic (H2) and organotrophic (lactate) bacteria were established from each site under both meso- and thermophilic conditions. Dissimilatory sulphite reductase (Dsr) and 16S ribosomal RNA (rRNA) genes amplified from DNA extracted from the cartridges were most closely related to the Gram-positive species Desulfotomaculum thermosapovorans and Desulfotomaculum geothermicum, or affiliated with a novel deeply branching clade. The dsr sequences recovered from the Washington State deep aquifer systems affiliated closely with the South African sequences, suggesting that Gram-positive sulphate-reducing bacteria are widely distributed in the deep subsurface.

[1]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[2]  K. Schleifer,et al.  ARB: a software environment for sequence data. , 2004, Nucleic acids research.

[3]  F. Brockman,et al.  Temporal Shifts in the Geochemistry and Microbial Community Structure of an Ultradeep Mine Borehole Following Isolation , 2003 .

[4]  M. Wagner,et al.  Origins and diversification of sulfate-respiring microorganisms , 2002, Antonie van Leeuwenhoek.

[5]  Ken Takai,et al.  Archaeal Diversity in Waters from Deep South African Gold Mines , 2001, Applied and Environmental Microbiology.

[6]  Linda L. Blackall,et al.  Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes , 2001, Journal of bacteriology.

[7]  S. Macnaughton,et al.  Diversity and Characterization of Sulfate-Reducing Bacteria in Groundwater at a Uranium Mill Tailings Site , 2001, Applied and Environmental Microbiology.

[8]  C. Joulian,et al.  Congruent Phylogenies of Most Common Small-Subunit rRNA and Dissimilatory Sulfite Reductase Gene Sequences Retrieved from Estuarine Sediments , 2001, Applied and Environmental Microbiology.

[9]  L. Young,et al.  Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsrAB) genes. , 2001, FEMS microbiology ecology.

[10]  E. Delong,et al.  Culture-Dependent and Culture-Independent Characterization of Microbial Assemblages Associated with High-Temperature Petroleum Reservoirs , 2000, Applied and Environmental Microbiology.

[11]  K. Pedersen,et al.  Distribution and metabolic diversity of microorganisms in deep igneous rock aquifers of Finland , 1999 .

[12]  Michael Wagner,et al.  Diversity of Sulfate-Reducing Bacteria in Oxic and Anoxic Regions of a Microbial Mat Characterized by Comparative Analysis of Dissimilatory Sulfite Reductase Genes , 1999, Applied and Environmental Microbiology.

[13]  K. Horikoshi,et al.  Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. , 1999, International journal of systematic bacteriology.

[14]  M. Cottrell,et al.  Diversity of Dissimilatory Bisulfite Reductase Genes of Bacteria Associated with the Deep-Sea Hydrothermal Vent Polychaete Annelid Alvinella pompejana , 1999, Applied and Environmental Microbiology.

[15]  S. W. Li,et al.  Dissimilatory Reduction of Fe(III) and Other Electron Acceptors by a Thermus Isolate , 1999, Applied and Environmental Microbiology.

[16]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[17]  E. Stackebrandt,et al.  Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. , 1997, International journal of systematic bacteriology.

[18]  K. Pedersen,et al.  Investigation of the potential for microbial contamination of deep granitic aquifers during drilling using 16S rRNA gene sequencing and culturing methods , 1997 .

[19]  C. Dahl,et al.  Towards the phylogeny of APS reductases and sirohaem sulfite reductases in sulfate-reducing and sulfur-oxidizing prokaryotes. , 1997, Microbiology.

[20]  D. Boone,et al.  Description of two new thermophilic Desulfotomaculum spp., Desulfotomaculum putei sp. nov., from a deep terrestrial subsurface, and Desulfotomaculum luciae sp. nov., from a hot spring , 1997 .

[21]  R. M. Lehman,et al.  Pore‐size constraints on the activity and survival of subsurface bacteria in a late cretaceous shale‐sandstone sequence, northwestern New Mexico , 1997 .

[22]  D A Stahl,et al.  Population structure of microbial communities associated with two deep, anaerobic, alkaline aquifers , 1997, Applied and environmental microbiology.

[23]  J. Suflita,et al.  Confined subsurface microbial communities in Cretaceous rock , 1997, Nature.

[24]  M. Cottrell,et al.  Molecular Identification and Localization of Filamentous Symbiotic Bacteria Associated with the Hydrothermal Vent Annelid Alvinella pompejana , 1997, Applied and environmental microbiology.

[25]  R. Christen,et al.  Bacterial diversity in a deep-subsurface clay environment , 1996, Applied and environmental microbiology.

[26]  D. Karl,et al.  A computer-simulated restriction fragment length polymorphism analysis of bacterial small-subunit rRNA genes: efficacy of selected tetrameric restriction enzymes for studies of microbial diversity in nature , 1996, Applied and environmental microbiology.

[27]  T. Lien,et al.  Desulfotomaculum thermocisternum sp. nov., a Sulfate Reducer Isolated from a Hot North Sea Oil Reservoir , 1996 .

[28]  Todd O. Stevens,et al.  Lithoautotrophic Microbial Ecosystems in Deep Basalt Aquifers , 1995, Science.

[29]  G. Voordouw The genus desulfovibrio: the centennial , 1995, Applied and environmental microbiology.

[30]  H. Aldrich,et al.  Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. , 1995, International journal of systematic bacteriology.

[31]  B. Patel,et al.  Isolation and characterization of a thermophilic sulfate-reducing bacterium, Desulfotomaculum thermosapovorans sp. nov. , 1995, International journal of systematic bacteriology.

[32]  G. Voordouw,et al.  Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR , 1995, Applied and environmental microbiology.

[33]  C. Woese,et al.  Isolation and characterization of Desulfitobacterium dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. , 1994, International journal of systematic bacteriology.

[34]  Andrew G. Dickson,et al.  Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water. Version 2 , 1994 .

[35]  R. Devereux,et al.  A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment , 1994, Applied and environmental microbiology.

[36]  A. Stams,et al.  The dissimilatory sulfite reductase from Desulfosarcina variabilis is a desulforubidin containing uncoupled metalated sirohemes and S = 9/2 iron-sulfur clusters. , 1993, Biochemistry.

[37]  C. Dahl,et al.  Dissimilatory sulphite reductase from Archaeoglobus fulgidus: physico-chemical properties of the enzyme and cloning, sequencing and analysis of the reductase genes. , 1993, Journal of general microbiology.

[38]  C. Batt,et al.  Polymerase chain reaction amplification of naphthalene-catabolic and 16S rRNA gene sequences from indigenous sediment bacteria , 1993, Applied and environmental microbiology.

[39]  R. Amann,et al.  Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms , 1992, Applied and environmental microbiology.

[40]  R. Tanner Monitoring sulfate-reducing bacteria: comparison of enumeration media , 1989 .

[41]  K. Johnson,et al.  Coulometric total carbon dioxide analysis for marine studies: Automation and calibration , 1987 .

[42]  K. Johnson,et al.  Coulometric TCO2 analyses for marine studies; an introduction , 1985 .

[43]  H. Kent,et al.  The genomes of Desulfovibrio gigas and D. vulgaris. , 1984, Journal of general microbiology.

[44]  J. Zeikus,et al.  Characterization of a New Type of Dissimilatory Sulfite Reductase Present in Thermodesulfobacterium commune , 1983, Journal of bacteriology.

[45]  J. Linton,et al.  The effect of mixtures of glucose and formate on the yield and respiration of a chemostat culture of Beneckea natriegens , 1981, Archives of Microbiology.

[46]  F. Widdel,et al.  A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans , 1977, Archives of Microbiology.

[47]  R S Wolfe,et al.  New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressureized atmosphere , 1976, Applied and environmental microbiology.

[48]  H. D. Peck,et al.  Isolation of Assimilatory- and Dissimilatory-Type Sulfite Reductases from Desulfovibrio vulgaris , 1973, Journal of bacteriology.

[49]  J. Fredrickson,et al.  Bacteria associated with deep, alkaline, anaerobic groundwaters in Southeast Washington , 2004, Microbial Ecology.

[50]  R. Cord-Ruwisch,et al.  Desulfotomaculum geothermicum sp. nov., a thermophilic, fatty acid-degrading, sulfate-reducing bacterium isolated with H2 from geothermal ground water , 2004, Antonie van Leeuwenhoek.

[51]  D. H. Diering,et al.  Mining at ultra depths in the 21st century , 2000 .

[52]  T. Lien,et al.  Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences , 1999, Extremophiles.

[53]  Philip E. Long,et al.  Observations Pertaining to the Origin and Ecology of Microorganisms Recovered from the Deep Subsurface of Taylorsville Basin, Virginia , 1998 .

[54]  Guy D. Fauque,et al.  Ecology of Sulfate-Reducing Bacteria , 1995 .

[55]  R. Mackie,et al.  Methanogenesis and sulfate reduction in timber and drainage water from a gold mine , 1989 .

[56]  R. E. Beeman,et al.  Anaerobic metabolic processes in the deep terrestrial subsurface , 1989 .

[57]  David L. Balkwill,et al.  Numbers, diversity, and morphological characteristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina , 1989 .

[58]  A. E. Greenberg,et al.  Standard methods for the examination of water and wastewater : supplement to the sixteenth edition , 1988 .

[59]  H. D. Peck,et al.  Hydrogenase, electron-transfer proteins, and energy coupling in the sulfate-reducing bacteria Desulfovibrio. , 1984, Annual review of microbiology.

[60]  Gordon A. McFeters,et al.  Sulfate‐reducing and methanogenic bacteria from deep aquifers in montana , 1981 .

[61]  Gordon A. McFeters,et al.  Dissimilatory bacterial sulfate reduction in montana groundwaters , 1980 .

[62]  G. J. Banwart,et al.  Basic Food Microbiology , 1979 .

[63]  L. A. Chambers,et al.  Microbiological fractionation of stable sulfur isotopes: A review and critique , 1979 .

[64]  E. S. Bastin,et al.  THE PRESENCE OF SULPHATE REDUCING BACTERIA IN OIL FIELD WATERS. , 1926, Science.