Determination of fiber orientation in Norway spruce using X-ray diffraction and laser scattering

Spiral grain reduces the quality of timber since it causes twisting during drying and reduces the mechanical strength of wood products. The orientation of wood fibers in Norway spruce as a function of the distance from the pith was studied using both x-ray diffraction and light scattering. In radial-longitudinal plane upper tips of fibers were tilted towards the pith and the tilt angle increased gradually towards the bark in most of the samples. Periodic oscillations in the spiral grain angle were observed. Increased growth rate was found to increase the amplitude of this oscillation. There was no clear correlation between the angles determining the fiber orientation and other parameters like the lumen diameter, the cell wall thickness, the density of the sample, the fiber length, the circularity index of the cell lumen, or the mean microfibril angle. However, fiber orientation in tangential-longitudinal plane varied more in broad annual rings than in narrow annual rings. ZusammenfassungDrehwuchs verringert die Holzqualität, weil er zu Verdrehungen beim Trocknen führt und die mechanische Festigkeit der Holzprodukte verringert. Mittels Röntgenbeugung und Laserstreuung wurde die Faserneigung in Fichtenholz in Abhängigkeit vom Abstand zur Markröhre untersucht. In radial-longitudinaler Ebene neigten sich die oberen Faserenden zum Mark hin. Zur Rinde hin stieg der Neigungswinkel bei den meisten Proben allmählich an. Der Faserwinkel unterlag periodischen Schwankungen, die mit zunehmender Jahrringbreite grösser wurden. Eine eindeutige Korrelation zwischen den Faserwinkeln und anderen Parametern, wie zum Beispiel Zelllumendurchmesser, Zellwanddicke, Probendichte, Faserlänge, Rundheitsindex der Zelllumen oder dem mittleren Mikrofibrillenwinkel, konnte nicht festgestellt werden. Die Faserneigung in tangential-longitudinaler Ebene variierte jedoch bei breiten Jahrringen mehr als bei schmalen Jahrringen.

[1]  W. Stiell RAPID ESTIMATE OF VOLUME IN RED PINE PLANTATIONS , 1957 .

[2]  P. Northcott IS SPIRAL GRAIN THE NORMAL GROWTH PATTERN , 1957 .

[3]  L. Chalk,et al.  Variation in Tracheid Length within The Ring in Pinus RadiatA D. Don , 1961 .

[4]  T. Kozlowski,et al.  Patterns of Water Movement in Forest Trees , 1963, Botanical Gazette.

[5]  T. Kozlowski,et al.  Movement of Injected Dyes in Gymnosperm Stems in Relation to Tracheid Alignment , 1967 .

[6]  L. Alexander,et al.  X-Ray diffraction procedures for polycrystalline and amorphous materials , 1974 .

[7]  W. Cǒté,et al.  Principles of Wood Science and Technology: I Solid Wood , 1977 .

[8]  Dr. John Maddern Harris,et al.  Spiral Grain and Wave Phenomena in Wood Formation , 1988, Springer Series in Wood Science.

[9]  J. Sugiyama,et al.  Transformation of Valonia cellulose crystals by an alkaline hydrothermal treatment , 1990 .

[10]  S. Linder Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce , 1995 .

[11]  R. Evans,et al.  Microfibril angle scanning of increment cores by x-ray diffractometry , 1996 .

[12]  R Evans,et al.  木材でのミクロフィブリル角のX線回折測定法による算定への分散近似法 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1999 .

[13]  Jun Shen,et al.  Experimental Study of Optical Scattering and Fiber Orientation Determination of Softwood and Hardwood with Different Surface Finishes , 2000 .

[14]  Marie Johansson,et al.  Distortion of Norway spruce timber Part 1. Variation of relevant wood properties , 2001, Holz als Roh- und Werkstoff.

[15]  I. Robert Kliger,et al.  Spiral grain on logs under bark reveals twist-prone raw material , 2001 .

[16]  S. Linder,et al.  Effect of Nutrient Optimization on Branch Characteristics in Picea abies (L.) Karst , 2001 .

[17]  P. Saranpää,et al.  Structural variation of tracheids in Norway spruce (Picea abies [L.] Karst.). , 2001, Journal of structural biology.

[18]  Marie Johansson,et al.  Distortion of Norway spruce timber Part 2. Modelling twist , 2001, Holz als Roh- und Werkstoff.

[19]  P. Gjerdrum,et al.  Spiral grain in Norway spruce: constant change rate in grain angle in Scandinavian sawlogs , 2002 .

[20]  S. Linder,et al.  Effect of Growth Rate on Fibre Characteristics in Norway Spruce (Picea abies (L.) Karst.) , 2002 .

[21]  S. Linder,et al.  Enhanced growth and ethylene increases spiral grain formation in Picea abies and Abies balsamea trees , 2002, Trees.

[22]  S. Linder,et al.  Wood-density variation of Norway spruce in relation to nutrient optimization and fibre dimensions , 2002 .

[23]  R. Wimmer,et al.  Genetic parameters for spiral-grain angle in two 19-year-old clonal Norway spruce trials , 2002 .

[24]  Jun Shen,et al.  Ellipse detection and phase demodulation for wood grain orientation measurement based on the tracheid effect , 2003 .

[25]  Mats Ekevad,et al.  Method to compute fiber directions in wood from computed tomography images , 2004, Journal of Wood Science.

[26]  P. Fratzl,et al.  Effect of growth rate on mean microfibril angle and cross-sectional shape of tracheids of Norway spruce , 2004, Trees.

[27]  Jan Nyström,et al.  Automatic measurement of fiber orientation in softwoods by using the tracheid effect , 2003 .

[28]  Johan Oja,et al.  Prediction of fiber orientation in Norway spruce logs using an X-ray log scanner : a preliminary study , 2003 .

[29]  Raimo Silvennoinen,et al.  Determination of wood grain direction from laser light scattering pattern , 2004 .

[30]  Wei Lu,et al.  Grain Pattern Characterization and Classification of Walnut by Image Processing , 2007 .

[31]  R. Kliger,et al.  Influence of Material Characteristics on Warp In Norway Spruce Studs , 2007 .

[32]  J. Wobst,et al.  Variabilität der Faserneigung im Holz der Esche (Fraxinus excelsior L.) und Douglasie (Pseudotsuga menziesii (Mirb.) FRANCO) , 1994, Holz als Roh- und Werkstoff.