Skyrmion lattice structural transition in MnSi

A triangular-to-square lattice transition of topological magnetic particles (skyrmions) was observed in a chiral magnet MnSi. Magnetic skyrmions exhibit particle-like properties owing to the topology of their swirling spin texture, providing opportunities to study crystallization of topological particles. However, they mostly end up with a triangular lattice, and thus, the packing degree of freedom in the skyrmion particles has been overlooked so far. We report a structural transition of the skyrmion lattice in MnSi. By use of small-angle neutron scattering, we explore a metastable skyrmion state spreading over a wide temperature and magnetic field region, after thermal quenching. The quenched skyrmions undergo a triangular-to-square lattice transition with decreasing magnetic field at low temperatures. Our study suggests that various skyrmion lattices can emerge at low temperatures, where the skyrmions exhibit distinct topological nature and high sensitivity to the local magnetic anisotropy arising from the underlying chemical lattice.

[1]  W. Ketterle,et al.  Observation of Vortex Lattices in Bose-Einstein Condensates , 2001, Science.

[2]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature communications.

[3]  Y. Tokura,et al.  Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.

[4]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[5]  A. Saxena,et al.  Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy , 2014, 1406.1422.

[6]  A. N. Bogdanov,et al.  Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .

[7]  Blue quantum fog: chiral condensation in quantum helimagnets. , 2005, Physical review letters.

[8]  E. M. Forgan,et al.  Direct Evidence for an Intrinsic Square Vortex Lattice in the Overdoped High- Tc Superconductor La1.83Sr0.17CuO4+δ , 2002, cond-mat/0204278.

[9]  J. White,et al.  Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. , 2016, Nature materials.

[10]  Vortex phase diagram in rotating two-component Bose-Einstein condensates. , 2003, Physical review letters.

[11]  Smith,et al.  Orientational ordering transition in solid C60. , 1991, Physical review letters.

[12]  Dolan,et al.  Anisotropic vortex structure in Y1Ba2Cu3O7. , 1989, Physical review letters.

[13]  A. Hubert,et al.  Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .

[14]  J. White,et al.  N\'eel-type Skyrmion Lattice with Confined Orientation in the Polar Magnetic Semiconductor GaV$_4$S$_8$ , 2015, 1502.08049.

[15]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[16]  F. Kagawa,et al.  Quenching of Charge and Spin Degrees of Freedom in Condensed Matter , 2016, Advanced materials.

[17]  A. Vishwanath,et al.  Theory of the helical spin crystal: a candidate for the partially ordered state of MnSi. , 2006, Physical review letters.

[18]  U. Rößler,et al.  Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets , 2009, 0904.4842.

[19]  I. Aranson,et al.  Scanning tunneling microscopy observation of a square abrikosov lattice in LuNi2B2C , 1997 .

[20]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[21]  I. Dzyaloshinskiǐ THEORY OF HELICOIDAL STRUCTURES IN ANTIFERROMAGNETS. I. NONMETALS , 2013 .

[22]  J. White,et al.  Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.

[23]  T. Matsuda,et al.  Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. , 2014, Nature nanotechnology.

[24]  Y. Tokura,et al.  Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice , 2016 .

[25]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[26]  R. Wiesendanger,et al.  The properties of isolated chiral skyrmions in thin magnetic films , 2015, 1508.02155.

[27]  I Coddington,et al.  Vortex-lattice dynamics in rotating spinor Bose-Einstein condensates. , 2004, Physical review letters.

[28]  V. Aswal,et al.  Direct evidence for an intrinsic square vortex lattice in the overdoped high- T(c) superconductor La(1.83)Sr(0.17)CuO(4+delta). , 2002, Physical review letters.

[29]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[30]  Alexei Abrikosov,et al.  Magnetic properties of superconductors of the second group , 1956 .

[31]  A. N. Bogdanov,et al.  Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy , 2013, 1311.1191.

[32]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[33]  R. Fleming,et al.  Diffraction Symmetry in Crystalline, Close-Packed C60 , 1990 .

[34]  L. Pintschovius,et al.  Partial order in the non-Fermi-liquid phase of MnSi , 2004, Nature.