DOMINATION NUMBER IN THE ANNIHILATING-SUBMODULE GRAPH OF MODULES OVER COMMUTATIVE RINGS

Let $M$ be a module over a commutative ring $R$. The annihilating-submodule graph of $M$, denoted by $AG(M)$, is a simple graph in which a non-zero submodule $N$ of $M$ is a vertex if and only if there exists a non-zero proper submodule $K$ of $M$ such that $NK=(0)$, where $NK$, the product of $N$ and $K$, is denoted by $(N:M)(K:M)M$ and two distinct vertices $N$ and $K$ are adjacent if and only if $NK=(0)$. This graph is a submodule version of the annihilating-ideal graph and under some conditions, is isomorphic with an induced subgraph of the Zariski topology-graph $G(\tau_T)$ which was introduced in (The Zariski topology-graph of modules over commutative rings, Comm. Algebra., 42 (2014), 3283--3296). In this paper, we study the domination number of $AG(M)$ and some connections between the graph-theoretic properties of $AG(M)$ and algebraic properties of module $M$.