Avoiding shear locking for the Timoshenko beam problem via isogeometric collocation methods

In this work we study isogeometric collocation methods for the Timoshenko beam problem, considering both mixed and displacement-based formulations. In particular, we show that locking-free solutions are obtained for mixed methods independently on the approximation degrees selected for the unknown fields. Moreover, several numerical tests are provided in order to support our theoretical results and to show the good behavior and the flexibility of isogeometric collocation methods in this context.

[1]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[2]  Jesús Ildefonso Díaz Díaz,et al.  ON THE COMPLEX GINZBURG–LANDAU EQUATION WITH A DELAYED FEEDBACK , 2006 .

[3]  G. Farin NURB curves and surfaces: from projective geometry to practical use , 1995 .

[4]  T. Hughes,et al.  Isogeometric collocation for elastostatics and explicit dynamics , 2012 .

[5]  Alessandro Reali,et al.  AN ISO GEOMETRIC ANALYSIS APPROACH FOR THE STUDY OF STRUCTURAL VIBRATIONS , 2006 .

[6]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[7]  D. Arnold,et al.  On the Asymptotic Convergence of Spline Collocation Methods for Partial Differential Equations , 1984 .

[8]  Richard W. Johnson,et al.  A B-spline collocation method for solving the incompressible Navier-Stokes equations using an ad hoc method: the Boundary Residual method , 2005 .

[9]  P. M. Prenter Splines and variational methods , 1975 .

[10]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[11]  G. Sangalli,et al.  A fully ''locking-free'' isogeometric approach for plane linear elasticity problems: A stream function formulation , 2007 .

[12]  T. Hughes,et al.  ISOGEOMETRIC COLLOCATION METHODS , 2010 .

[13]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[14]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[15]  L. Beirao da Veiga,et al.  An isogeometric method for the Reissner-Mindlin plate bending problem , 2011, 1106.4436.

[16]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[17]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[18]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[19]  T. Hughes,et al.  Efficient quadrature for NURBS-based isogeometric analysis , 2010 .

[20]  Douglas N. Arnold,et al.  On the asymptotic convergence of collocation methods , 1983 .

[21]  Stephen Demko,et al.  On the existence of interpolating projections onto spline spaces , 1985 .

[22]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[23]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[24]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[25]  S. Timoshenko,et al.  LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars , 1921 .

[26]  John A. Evans,et al.  Isogeometric Analysis , 2010 .

[27]  T. Hughes,et al.  A Simple Algorithm for Obtaining Nearly Optimal Quadrature Rules for NURBS-based Isogeometric Analysis , 2012 .

[28]  F. Auricchio,et al.  The importance of the exact satisfaction of the incompressibility constraint in nonlinear elasticity: mixed FEMs versus NURBS-based approximations , 2010 .

[29]  Giancarlo Sangalli,et al.  Anisotropic NURBS approximation in isogeometric analysis , 2012 .

[30]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[31]  D. F. Rogers,et al.  An Introduction to NURBS: With Historical Perspective , 2011 .

[32]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[33]  Alessandro Reali,et al.  GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..

[34]  Giancarlo Sangalli,et al.  Some estimates for h–p–k-refinement in Isogeometric Analysis , 2011, Numerische Mathematik.

[35]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[36]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[37]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[38]  Javier Jiménez,et al.  A critical evaluation of the resolution properties of B-Spline and compact finite difference methods , 2001 .