A GPU-Based Approximate SVD Algorithm
暂无分享,去创建一个
[1] William Jalby,et al. Stability Analysis and Improvement of the Block Gram-Schmidt Algorithm , 1991, SIAM J. Sci. Comput..
[2] P. J. Narayanan,et al. Singular value decomposition on GPU using CUDA , 2009, 2009 IEEE International Symposium on Parallel & Distributed Processing.
[3] Mark Tygert,et al. A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..
[4] Alexander G. Gray,et al. QUIC-SVD: Fast SVD Using Cosine Trees , 2008, NIPS.
[5] James Demmel,et al. LU, QR and Cholesky Factorizations using Vector Capabilities of GPUs , 2008 .
[6] Santosh S. Vempala,et al. Adaptive Sampling and Fast Low-Rank Matrix Approximation , 2006, APPROX-RANDOM.
[7] Eric J. Kelmelis,et al. CULA: hybrid GPU accelerated linear algebra routines , 2010, Defense + Commercial Sensing.
[8] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[9] Mark A. Richards,et al. QR decomposition on GPUs , 2009, GPGPU-2.
[10] Sorin C. Popescu,et al. Lidar Remote Sensing , 2011 .
[11] Shmuel Friedland,et al. Fast Monte-Carlo low rank approximations for matrices , 2006, 2006 IEEE/SMC International Conference on System of Systems Engineering.
[12] Dinesh Manocha,et al. LU-GPU: Efficient Algorithms for Solving Dense Linear Systems on Graphics Hardware , 2005, ACM/IEEE SC 2005 Conference (SC'05).
[13] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.