Cramér-Rao-type bound for state estimation in linear discrete-time system with unknown system parameters
暂无分享,去创建一个
[1] Ehud Weinstein. The extended least-squares and the joint maximum-a-posteriori maximum-likelihood estimation criteria , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).
[2] Hagit Messer,et al. Notes on the Tightness of the Hybrid CramÉr–Rao Lower Bound , 2009, IEEE Transactions on Signal Processing.
[3] K. Åström,et al. Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1966 .
[4] M. Levin. Estimation of a system pulse transfer function in the presence of noise , 1964 .
[5] M. Aoki,et al. On Certain Convergence Questions in System Identification , 1970 .
[6] H. Messer,et al. The hybrid Cramér-Rao bound and the generalized Gaussian linear estimation problem , 2008, 2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop.
[7] T. Nayak,et al. The concept of risk unbiasedness in statistical prediction , 2010 .
[8] D. G. Lainiotis,et al. Optimal adaptive filter realizations for sample stochastic processes with an unknown parameter , 1969 .
[9] Biao Huang,et al. System Identification , 2000, Control Theory for Physicists.
[10] Bernard Widrow,et al. Least-Mean-Square Adaptive Filters: Haykin/Least-Mean-Square Adaptive Filters , 2005 .
[11] A. V. D. Vaart,et al. Asymptotic Statistics: Frontmatter , 1998 .
[12] D. Spain,et al. Identification and modelling of discrete stochastic linear systems , 1972, CDC 1972.
[13] R. Kashyap. Maximum likelihood identification of stochastic linear systems , 1970 .
[14] T. Kailath,et al. An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .
[15] R. Mehra. On the identification of variances and adaptive Kalman filtering , 1970 .
[16] R. K. Mehra,et al. Identification of stochastic linear dynamic systems using Kalman filter representation , 1971 .
[17] Henry Cox,et al. On the estimation of state variables and parameters for noisy dynamic systems , 1964 .
[18] Joseph Tabrikian,et al. Bayesian Estimation in the Presence of Deterministic Nuisance Parameters—Part I: Performance Bounds , 2015, IEEE Transactions on Signal Processing.
[19] Arie Yeredor,et al. The joint MAP-ML criterion and its relation to ML and to extended least-squares , 2000, IEEE Trans. Signal Process..
[20] Karl Johan Åström,et al. Numerical Identification of Linear Dynamic Systems from Normal Operating Records , 1965 .
[21] T. Başar,et al. A New Approach to Linear Filtering and Prediction Problems , 2001 .
[22] H. Akaike,et al. Comment on "An innovations approach to least-squares estimation, part I: Linear filtering in additive white noise" , 1970 .
[23] Bernard Widrow,et al. Least-mean-square adaptive filters , 2003 .
[24] R. Mehra. On-line identification of linear dynamic systems with applications to Kalman filtering , 1971 .
[25] Yaakov Bar-Shalom,et al. Optimal simultaneous state estimation and parameter identification in linear discrete-time systems , 1970 .
[26] K. Steiglitz,et al. Maximum likelihood estimation of rational transfer function parameters , 1967, IEEE Transactions on Automatic Control.
[27] Demetrios G. Lainiotis,et al. Optimal Estimation in the Presence of Unknown Parameters , 1969, IEEE Trans. Syst. Sci. Cybern..
[28] H. Messer. The Hybrid Cramer-Rao Lower Bound - From Practice to Theory , 2006, Fourth IEEE Workshop on Sensor Array and Multichannel Processing, 2006..
[29] Joseph Tabrikian,et al. Bayesian cramér-rao type bound for risk-unbiased estimation with deterministic nuisance parameters , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[30] Hans-Andrea Loeliger,et al. AR model parameter estimation: from factor graphs to algorithms , 2004, 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing.