MIRAGE: Model description and evaluation of aerosols and trace gases

[1] The Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE) modeling system, designed to study the impacts of anthropogenic aerosols on the global environment, is described. MIRAGE consists of a chemical transport model coupled online with a global climate model. The chemical transport model simulates trace gases, aerosol number, and aerosol chemical component mass (sulfate, methane sulfonic acid (MSA), organic matter, black carbon (BC), sea salt, and mineral dust) for four aerosol modes (Aitken, accumulation, coarse sea salt, and coarse mineral dust) using the modal aerosol dynamics approach. Cloud-phase and interstitial aerosol are predicted separately. The climate model, based on Community Climate Model, Version 2 (CCM2), has physically based treatments of aerosol direct and indirect forcing. Stratiform cloud water and droplet number are simulated using a bulk microphysics parameterization that includes aerosol activation. Aerosol and trace gas species simulated by MIRAGE are presented and evaluated using surface and aircraft measurements. Surface-level SO2 in North American and European source regions is higher than observed. SO2 above the boundary layer is in better agreement with observations, and surface-level SO2 at marine locations is somewhat lower than observed. Comparison with other models suggests insufficient SO2 dry deposition; increasing the deposition velocity improves simulated SO2. Surface-level sulfate in North American and European source regions is in good agreement with observations, although the seasonal cycle in Europe is stronger than observed. Surface-level sulfate at high-latitude and marine locations, and sulfate above the boundary layer, are higher than observed. This is attributed primarily to insufficient wet removal; increasing the wet removal improves simulated sulfate at remote locations and aloft. Because of the high sulfate bias, radiative forcing estimates for anthropogenic sulfur given in 2001 by S. J. Ghan and colleagues are probably too high. Surface-level dimethyl sulfide (DMS) is ∼40% higher than observed, and the seasonal cycle shows too much DMS in local winter, partially caused by neglect of oxidation by NO3. Surface-level MSA at marine locations is ∼80% higher than observed, also attributed to insufficient wet removal. Surface-level BC is ∼50% lower than observed in the United States and ∼40% lower than observed globally. Treating BC as initially hydrophobic would lessen this bias. Surface-level organic matter is lower than observed in the United States, similar to BC, but shows no bias in the global comparison. Surface-level sea salt concentrations are ∼30% lower than observed, partly caused by low temporal variance of the model's 10 m wind speeds. Submicrometer sea salt is strongly underestimated by the emissions parameterization. Dust concentrations are within a factor of 3 at most sites but tend to be lower than observed, primarily because of neglect of very large particles and underestimation of emissions and vertical transport under high-wind conditions. Accumulation and Aitken mode number concentrations and mean sizes at the surface over ocean, and condensation nuclei concentrations aloft over the Pacific, are in fair agreement with observations. Concentrations over land are generally higher than observations, with mean sizes correspondingly lower than observations, especially at some European locations. Increasing the assumed size of emitted particles produces better agreement at the surface over land, and reducing the particle nucleation rate improves the agreement aloft over land.

[1]  C. Timmreck,et al.  Monthly Averages of Aerosol Properties: A Global Comparison Among Models, Satellite Data, and AERONET Ground Data , 2003 .

[2]  M. Jacobson Development of mixed‐phase clouds from multiple aerosol size distributions and the effect of the clouds on aerosol removal , 2003 .

[3]  Robert McGraw,et al.  Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments , 2003 .

[4]  John H. Seinfeld,et al.  Interactions between tropospheric chemistry and aerosols in a unified general circulation model , 2003 .

[5]  Petr Chylek,et al.  Canadian Aerosol Module: A size‐segregated simulation of atmospheric aerosol processes for climate and air quality models 1. Module development , 2003 .

[6]  D. Stevenson,et al.  The Global Distribution of Secondary Particulate Matter in a 3-D Lagrangian Chemistry Transport Model , 2003 .

[7]  T. Iversen,et al.  A scheme for process‐tagged SO4 and BC aerosols in NCAR CCM3: Validation and sensitivity to cloud processes , 2002 .

[8]  L. Barrie,et al.  Canadian Aerosol Module (CAM): A size-segregated simulation of atmospheric aerosol processes for climate and air quality models 2. Global sea-salt aerosol and its budgets , 2002 .

[9]  P. Valdes,et al.  The modern dust cycle: Comparison of model results with observations and study of sensitivities , 2002 .

[10]  Steven J. Ghan,et al.  Impact of aerosol size representation on modeling aerosol‐cloud interactions , 2002 .

[11]  A. Petzold,et al.  Aerosol states in the free troposphere at northern midlatitudes , 2002 .

[12]  J. Penner,et al.  Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations , 2002 .

[13]  John H. Seinfeld,et al.  Predicting global aerosol size distributions in general circulation models , 2002 .

[14]  J. Seinfeld,et al.  Global distribution and climate forcing of carbonaceous aerosols , 2002 .

[15]  M. Jacobson Control of fossil‐fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming , 2002 .

[16]  Jos Lelieveld,et al.  Gas/aerosol partitioning: 1. A computationally efficient model , 2002 .

[17]  J. Lelieveld,et al.  Gas/aerosol partitioning 2. Global modeling results , 2002 .

[18]  V. Ramaswamy,et al.  A general circulation model study of the global carbonaceous aerosol distribution , 2002 .

[19]  Jón Egill Kristjánsson,et al.  Studies of the aerosol indirect effect from sulfate and black carbon aerosols , 2002 .

[20]  G. Myhre,et al.  Modeling the Annual Cycle of Sea Salt in the Global 3D Model Oslo CTM2: Concentrations, Fluxes, and Radiative Impact. , 2002 .

[21]  B. Holben,et al.  Single-Scattering Albedo and Radiative Forcing of Various Aerosol Species with a Global Three-Dimensional Model , 2002 .

[22]  D. Shindell,et al.  Impact of Future Climate and Emission Changes on Stratospheric Aerosols and Ozone , 2002 .

[23]  A. Clarke,et al.  A Pacific Aerosol Survey. Part I: A Decade of Data on Particle Production, Transport, Evolution, and Mixing in the Troposphere* , 2002 .

[24]  Shaocai Yu,et al.  Retrieval of aerosol properties from moments of the particle size distribution for kernels involving the step function: cloud droplet activation , 2002 .

[25]  C. Land,et al.  A Comparison of Model- and Satellite-Derived Aerosol Optical Depth and Reflectivity , 2002 .

[26]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[27]  J. Wilson,et al.  A modeling study of global mixed aerosol fields , 2001 .

[28]  Alfred Wiedensohler,et al.  Atmospheric particle number size distribution in central Europe: Statistical relations to air masses and meteorology , 2001 .

[29]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[30]  M. Chin,et al.  Vertical distributions of sulfur species simulated by large scale atmospheric models in COSAM: Comparison with observations: Atmospheric models in COSAM , 2001 .

[31]  Guy P. Brasseur,et al.  Effects of aerosols on tropospheric oxidants: A global model study , 2001 .

[32]  J. Ogren,et al.  Four years of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site , 2001 .

[33]  D. Koch Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM , 2001 .

[34]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[35]  S. Schwartz,et al.  Description and evaluation of a six‐moment aerosol microphysical module for use in atmospheric chemical transport models , 2001 .

[36]  W. Collins,et al.  Simulating aerosols using a chemical transport model with assimilation of satellite aerosol retrievals: Methodology for INDOEX , 2001 .

[37]  James G. Hudson,et al.  Evaluation of aerosol direct radiative forcing in MIRAGE , 2001 .

[38]  L. Ruby Leung,et al.  A physically based estimate of radiative forcing by anthropogenic sulfate aerosol , 2001 .

[39]  M. Jacobson GATOR-GCMM: A global through urban scale air pollution and weather forecast model , 2001 .

[40]  M. Jacobson,et al.  Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols , 2022 .

[41]  M. Jacobson Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols , 2001 .

[42]  M. Chin,et al.  Vertical distributions of sulfur species simulated by large scale atmospheric models in COSAM: Comparison with observations , 2001 .

[43]  C. Land,et al.  A comparison of large-scale atmospheric sulphate aerosol models (COSAM): overview and highlights , 2001 .

[44]  J. Penner,et al.  Aerosols, their Direct and Indirect Effects , 2001 .

[45]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[46]  D. Koch,et al.  Trends in tropospheric aerosol loads and corresponding impact on direct radiative forcing between 1950 and 1990: A model study , 2000 .

[47]  Mian Chin,et al.  Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets , 2000 .

[48]  Hajime Okamoto,et al.  Global three‐dimensional simulation of aerosol optical thickness distribution of various origins , 2000 .

[49]  Joyce E. Penner,et al.  Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment , 2000 .

[50]  Pasi Aalto,et al.  One-Year Data of Submicron Size Modes of Tropospheric Background Aerosol in Southern Finland , 2000 .

[51]  J. Hand,et al.  Optical Measurements of Aerosol Size Distributions in Great Smoky Mountains National Park: Dry Aerosol Characterization , 2000, Journal of the Air & Waste Management Association.

[52]  P. Crutzen,et al.  Human‐activity‐enhanced formation of organic aerosols by biogenic hydrocarbon oxidation , 2000 .

[53]  S. Schwartz,et al.  Six‐moment representation of multiple aerosol populations in a sub‐hemispheric chemical transformation model , 2000 .

[54]  S. Ghan,et al.  A parameterization of aerosol activation: 2. Multiple aerosol types , 2000 .

[55]  A. Watson,et al.  In situ evaluation of air‐sea gas exchange parameterizations using novel conservative and volatile tracers , 2000 .

[56]  P. J. Rasch,et al.  Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[57]  P. J. Rasch,et al.  Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry , 2000 .

[58]  P. Rasch,et al.  A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3 , 2000 .

[59]  R. Dingenen,et al.  Size distribution and chemical composition of marine aerosols: a compilation and review , 2000 .

[60]  P. J. Rasch,et al.  A comparison of scavenging and deposition processes in global models: results from the WCRP Cambridge Workshop of 1995 , 2000 .

[61]  Leonard K. Peters,et al.  A new lumped structure photochemical mechanism for large‐scale applications , 1999 .

[62]  R. Easter,et al.  Simulation of the tropospheric distribution of carbon monoxide during the 1984 MAPS experiment , 1999 .

[63]  U. Lohmann,et al.  Tropospheric sulfur cycle in the Canadian general circulation model , 1999 .

[64]  M. Chin,et al.  Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model , 1999 .

[65]  Heinz Hass,et al.  Regional modelling of particulate matter with MADE , 1999 .

[66]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[67]  Allen S. Lefohn,et al.  Estimating historical anthropogenic global sulfur emission patterns for the period 1850–1990☆ , 1999 .

[68]  S. Ghan,et al.  A Comparison of Three Different Modeling Strategies for Evaluating Cloud and Radiation Parameterizations , 1999 .

[69]  John H. Seinfeld,et al.  Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model , 1999 .

[70]  Giacomo R. DiTullio,et al.  A global database of sea surface dimethylsulfide (DMS) measurements and a procedure to predict sea surface DMS as a function of latitude, longitude, and month , 1999 .

[71]  L. Barrie,et al.  Arctic lower tropospheric aerosol trends and composition at Alert, Canada: 1980–1995 , 1999 .

[72]  Ulrike Lohmann,et al.  Erratum: ``Prediction of the number of cloud droplets in the ECHAM GCM'' , 1999 .

[73]  Can a relaxation technique be used to validate clouds and sulphur species in a GCM , 1999 .

[74]  J. Shannon Regional trends in wet deposition of sulfate in the United States and SO2 emissions from 1980 through 1995 , 1999 .

[75]  J. Christensen,et al.  Tropospheric Gases and Aerosols in Northeast Greenland , 1999 .

[76]  J. Seinfeld,et al.  Simulation of Aerosol Dynamics: A Comparative Review of Algorithms Used in Air Quality Models , 1999 .

[77]  P. Rasch,et al.  MOZART, a global chemical transport model for ozone , 1998 .

[78]  C. C. Chuang,et al.  Climate forcing by carbonaceous and sulfate aerosols , 1998 .

[79]  I. Tegen,et al.  A general circulation model study on the interannual variability of soil dust aerosol , 1998 .

[80]  Vertical profiles and horizontal transport of atmospheric aerosols and trace gases over central Ontario , 1998 .

[81]  T. Berntsen,et al.  Global distribution of sulphate in the troposphere: A three-dimensional model study , 1998 .

[82]  P. Quinn,et al.  Aerosol optical properties in the marine boundary layer during the First Aerosol Characterization Experiment (ACE 1) and the underlying chemical and physical aerosol properties , 1998 .

[83]  J. Lelieveld,et al.  Simulation of global sulfate distribution and the influence on effective cloud drop radii with a coupled photochemistry sulfur cycle model , 1998 .

[84]  Erik Berge,et al.  A regional scale multilayer model for the calculation of long‐term transport and deposition of air pollution in Europe , 1998 .

[85]  D. Jacob,et al.  Global simulation of tropospheric O3-NOx-hydrocarbon chemistry , 1998 .

[86]  S. Kreidenweis,et al.  Simulations of sulfate aerosol dynamics—I: Model description , 1998 .

[87]  S. Kreidenweis,et al.  Simulations of sulfate aerosol dynamics part II: Model intercomparison , 1998 .

[88]  V. Ramaswamy,et al.  Reply [to “Comments on ‘A limited‐area‐model case study of the effects of sub‐grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol’”] , 1998 .

[89]  Steven J. Ghan,et al.  A parameterization of aerosol activation: 1. Single aerosol type , 1998 .

[90]  S. Kreidenweis,et al.  Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer , 1998, Nature.

[91]  J. Seinfeld,et al.  Size- and Composition-Resolved Externally Mixed Aerosol Model , 1998 .

[92]  Philip B. Russell,et al.  Chemical apportionment of aerosol column optical depth off the mid‐Atlantic coast of the United States , 1997 .

[93]  S. Schwartz,et al.  Evaluation of modeled sulfate and SO2 over North America and Europe for four seasonal months in 1986–1987 , 1997 .

[94]  Mian Chin,et al.  Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results , 1997 .

[95]  L. Ruby Leung,et al.  Prediction of cloud droplet number in a general , 1997 .

[96]  S. Ghan,et al.  Application of cloud microphysics to NCAR community climate model , 1997 .

[97]  R. Duce,et al.  Mass‐particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean , 1997 .

[98]  R. Zaveri Development and evaluation of a comprehensive tropospheric chemistry model for regional and global applications , 1997 .

[99]  J. Feichter,et al.  Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution , 1997 .

[100]  U. Lohmann,et al.  The atmospheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation , 1997 .

[101]  Martyn P. Chipperfield,et al.  Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers , 1997 .

[102]  J. Lelieveld,et al.  Terrestrial sources and distribution of atmospheric sulphur , 1997 .

[103]  P. Mcmurry,et al.  Measurements of new particle formation and ultrafine particle growth rates at a clean continental site , 1997 .

[104]  Joyce E. Penner,et al.  An assessment of the radiative effects of anthropogenic sulfate , 1997 .

[105]  P. Kasibhatla,et al.  A three-dimensional global model investigation of seasonal variations in the atmospheric burden of anthropogenic , 1997 .

[106]  Jean-Pierre Blanchet,et al.  Modeling sea-salt aerosols in the atmosphere 1. Model development , 1997 .

[107]  Jean-Pierre Blanchet,et al.  Modeling sea‐salt aerosols in the atmosphere: 2. Atmospheric concentrations and fluxes , 1997 .

[108]  Peter H. McMurry,et al.  Modal Aerosol Dynamics Modeling , 1997 .

[109]  M. H. Smith,et al.  Marine aerosol, sea-salt, and the marine sulphur cycle: a short review , 1997 .

[110]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[111]  J. I. MacPherson,et al.  Transport of ozone and sulfur to the North Atlantic atmosphere during the North Atlantic Regional Experiment , 1996 .

[112]  Thomas E. Graedel,et al.  Global gridded inventories of anthropogenic emissions of sulfur and nitrogen , 1996 .

[113]  J. Lelieveld,et al.  Role of mineral aerosol as a reactive surface in the global troposphere , 1996 .

[114]  J. Penner,et al.  A global three‐dimensional model study of carbonaceous aerosols , 1996 .

[115]  J. Wilson,et al.  A global black carbon aerosol model , 1996 .

[116]  W. Malm,et al.  Examining the relationship among atmospheric aerosols and light scattering and extinction in the Grand Canyon area , 1996 .

[117]  Andrew A. Lacis,et al.  Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol , 1996 .

[118]  Mian Chin,et al.  A global three‐dimensional model of tropospheric sulfate , 1996 .

[119]  Lennart Bengtsson,et al.  On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation , 1996 .

[120]  Johann Feichter,et al.  Simulation of the tropospheric sulfur cycle in a global climate model , 1996 .

[121]  John A. Gillies,et al.  Dust concentrations and particle-size characteristics of an intense dust haze event: Inland Delta Region, Mali, West Africa , 1996 .

[122]  G. Likens,et al.  Processes controlling the composition of precipitation at a remote southern hemispheric location: Torres del Paine National Park, Chile , 1996 .

[123]  E. Saltzman,et al.  Atmospheric sulfur cycling in the tropical Pacific marine boundary layer (12øS, 135øW): A comparison of field data and model results , 1996 .

[124]  M. Garstang,et al.  Temporal and spatial characteristics of Saharan dust outbreaks , 1996 .

[125]  M. Andreae Chapter 10 – Climatic effects of changing atmospheric aerosol levels , 1995 .

[126]  F. Binkowski,et al.  The Regional Particulate Matter Model 1. Model description and preliminary results , 1995 .

[127]  Olivier Boucher,et al.  General circulation model assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry , 1995 .

[128]  G. Brasseur,et al.  A three-dimensional study of the tropospheric sulfur cycle , 1995 .

[129]  J. Seinfeld,et al.  Organics alter hygroscopic behavior of atmospheric particles , 1995 .

[130]  Inez Y. Fung,et al.  Contribution to the atmospheric mineral aerosol load from land surface modification , 1995 .

[131]  John B. Anderson,et al.  Changes in Antarctic stratospheric aerosol characteristics due to volcanic eruptions as monitored by the Stratospheric Aerosol and Gas Experiment II satellite , 1995 .

[132]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[133]  Daewon W. Byun,et al.  Design artifacts in eulerian air quality models: evaluation of the effects of layer thickness and vertical profile correction on surface ozone concentrations , 1995 .

[134]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[135]  Stephen E. Schwartz,et al.  Sulfate over the North Atlantic and adjacent continental regions: Evaluation for October and November 1986 using a three-dimensonal model driven by observation-derived meteorology , 1994 .

[136]  M. Zahniser,et al.  Uptake of gas phase sulfur species methanesulfonic acid, dimethylsulfoxide, and dimethyl sulfone by aqueous surfaces , 1994 .

[137]  H. Hansson,et al.  Hygroscopic growth of aerosol particles and its influence on nucleation scavenging in cloud: Experimental results from Kleiner Feldberg , 1994 .

[138]  J. Hack Parameterization of moist convection in the National Center for Atmospheric Research community climate model (CCM2) , 1994 .

[139]  W. Malm,et al.  Spatial and seasonal trends in particle concentration and optical extinction in the United States , 1994 .

[140]  L. Barrie,et al.  Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada , 1994 .

[141]  J. Penner,et al.  Global Emissions and Models of Photochemically Active Compounds , 1994 .

[142]  A. Bandy,et al.  Advection of sulfur dioxide over the western Atlantic Ocean during CITE 3 , 1993 .

[143]  D. Dockery,et al.  An association between air pollution and mortality in six U.S. cities. , 1993, The New England journal of medicine.

[144]  L. Barrie,et al.  Biogenic sulfur aerosol in the arctic troposphere: 1. contributions to total sulfate , 1993 .

[145]  A. A. Isakov,et al.  Size distributions of dust aerosol measured during the Soviet-American experiment in Tadzhikistan, 1989 , 1993 .

[146]  L. Gomes,et al.  A comparison of characteristics of aerosol from dust storms in central Asia with soil-derived dust from other regions , 1993 .

[147]  B. Huebert,et al.  Observations of the atmospheric sulfur cycle on SAGA 3 , 1993 .

[148]  D. Hofmann Twenty Years Of Balloon-Borne Tropospheric Aerosol Measurements , 1993 .

[149]  M. H. Smith,et al.  Marine aerosol concentrations and estimated fluxes over the sea , 1993 .

[150]  J. Kiehl,et al.  The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing , 1993, Science.

[151]  H. Georgii,et al.  Biogenic sulfur compounds in seawater and the atmosphere of the Antarctic region , 1993 .

[152]  G. Krekov Models of atmospheric aerosols , 1993 .

[153]  Ruprecht Jaenicke,et al.  Chapter 1 Tropospheric Aerosols , 1993 .

[154]  D. Gatz,et al.  Emissions of alkaline elements calcium, magnesium, potassium, and sodium from open sources in the contiguous United States , 1992 .

[155]  P. Crutzen,et al.  Anthropogenic influence on the distribution of tropospheric sulphate aerosol , 1992, Nature.

[156]  C. Genthon,et al.  Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere , 1992 .

[157]  J. Seinfeld,et al.  Secondary organic aerosol formation and transport , 1992 .

[158]  S. Ghan,et al.  Computationally Efficient Approximations to Stratiform Cloud Microphysics Parameterization , 1992 .

[159]  J. Putaud,et al.  Covariations in oceanic dimethyl sulfide, its oxidation products and rain acidity at Amsterdam Island in the Southern Indian Ocean , 1992 .

[160]  H. Cachier,et al.  Particulate carbon content in rain at various temperate and tropical locations , 1992 .

[161]  P. Quinn,et al.  Variations in the methanesulfonate to sulfate molar ratio in submicrometer marine aerosol particles over the south Pacific Ocean , 1992 .

[162]  Christine A. O'Neill,et al.  Effects of Aerosol from Biomass Burning on the Global Radiation Budget , 1992, Science.

[163]  A. Bandy,et al.  Low yields of SO2 from dimethyl sulfide oxidation in the marine boundary layer , 1992 .

[164]  Daniel J. Jacob,et al.  Global inventory of sulfur emissions with 1°×1° resolution , 1992 .

[165]  A. Guenther,et al.  Sulfur emissions to the atmosphere from natural sourees , 1992 .

[166]  D. Luecken,et al.  Use of a three-dimensional cloud-chemistry model to study the transatlantic transport of soluble sulfur species , 1991 .

[167]  Henning Rodhe,et al.  A global three-dimensional model of the tropospheric sulfur cycle , 1991 .

[168]  T. Mizoguchi,et al.  Kosa aerosol as eolian carrier of anthropogenic material , 1991 .

[169]  Robert J. Charlson,et al.  Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols , 1991 .

[170]  Yoram J. Kaufman,et al.  Fossil fuel and biomass burning effect on climate - Heating or cooling? , 1991 .

[171]  D. Cooper,et al.  Measurements of atmospheric dimethyl sulfide and carbon disulfide in the western Atlantic boundary layer , 1991 .

[172]  R. Dingenen,et al.  Determination of the condensation accommodation coefficient of sulfuric acid on water-sulfuric acid aerosol , 1991 .

[173]  S. Ghan,et al.  Three-dimensional modeling of the global atmospheric sulfur cycle: A first step , 1991 .

[174]  P. J. Jonker,et al.  Chemical composition of precipitation collected on a weathership on the north Atlantic , 1991 .

[175]  M. Nishikawa,et al.  CHEMICAL COMPOSITION OF KOSA AEROSOL (YELLOW SAND DUST) COLLECTED IN JAPAN , 1991 .

[176]  R. W. Gillett,et al.  Coherence between seasonal cycles of dimethyl sulphide, methanesulphonate and sulphate in marine air , 1991, Nature.

[177]  P. Crutzen,et al.  Are there interactions of iodine and sulfur species in marine air photochemistry , 1990 .

[178]  H. Bingemer,et al.  On the biogenic origin of dimethylsulfide: Relation between chlorophyll, ATP, organismic DMSP, phytoplankton species, and DMS distribution in Atlantic surface water and atmosphere , 1990 .

[179]  P. Quinn,et al.  Interactions between the sulfur and reduced nitrogen cycles over the central Pacific Ocean , 1990 .

[180]  M. Andreae,et al.  Precipitation chemistry in central Amazonia , 1990 .

[181]  D. Jacob,et al.  The atmospheric sulfur cycle over the Amazon Basin: 2. Wet season , 1990 .

[182]  T. Nakajima,et al.  The coarse particle aerosols in the free troposphere around Japan , 1990 .

[183]  P. Mayewski,et al.  An ice-core record of atmospheric response to anthropogenic sulphate and nitrate , 1990, Nature.

[184]  M. Andreae,et al.  Airborne measurements of dimethylsulfide, sulfur dioxide, and aerosol ions over the Southern Ocean South of Australia , 1990 .

[185]  S. Warren,et al.  Soot in the atmosphere and snow surface of Antarctica , 1990 .

[186]  C. J. Hahn,et al.  The biogeochemical sulfur cycle in the marine boundary layer over the Northeast Pacific Ocean , 1990 .

[187]  A. Ryaboshapko,et al.  The Long-Range Transport of Sulfur and Nitrogen Compounds , 1990 .

[188]  J. Kristjánsson,et al.  Condensation and Cloud Parameterization Studies with a Mesoscale Numerical Weather Prediction Model , 1989 .

[189]  Rainer Bleck,et al.  Meteorological analysis of long range transport of mineral aerosols over the North Pacific , 1989 .

[190]  J. Prospero,et al.  Effect of continental sources on nitrate concentrations over the Pacific Ocean , 1989, Nature.

[191]  H. Sievering,et al.  Airborne sampling of selected trace chemicals above the central United States , 1989 .

[192]  S. Schwartz,et al.  Acid Deposition: Unraveling a Regional Phenomenon , 1989, Science.

[193]  J. Seinfeld,et al.  Sensitivity analysis of a chemical mechanism for aqueous‐phase atmospheric chemistry , 1989 .

[194]  M. Sarnthein,et al.  Wind-Borne Deposits in the Northwestern Indian Ocean: Record of Holocene Sediments Versus Modern Satellite Data , 1989 .

[195]  M. Wesely Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models , 1989 .

[196]  J. Galloway,et al.  The relationship between dimethyl sulfide and particulate sulfate in the mid-atlantic ocean atmosphere , 1989 .

[197]  Ranjit M. Passi,et al.  Modeling dust emission caused by wind erosion , 1988 .

[198]  D. Erickson,et al.  On the global flux of atmospheric sea salt , 1988 .

[199]  G. Ayers,et al.  Wet deposition of excess sulfate at Macquarie Island, 54° S , 1988 .

[200]  D. Gillette Threshold friction velocities for dust production for agricultural soils , 1988 .

[201]  D. Cooper,et al.  Shipboard measurements of atmospheric dimethylsulfide and hydrogen sulfide in the Caribbean and Gulf of Mexico , 1988 .

[202]  Jetse D. Kalma,et al.  Potential wind erosion in Australia: A continental perspective , 1988 .

[203]  T. Bates,et al.  Vertical distribution of dimethylsulfide, sulfur dioxide, aerosol ions, and radon over the Northeast Pacific Ocean , 1988 .

[204]  H. Berresheim Biogenic sulfur emissions from the Subantarctic and Antarctic Oceans , 1987 .

[205]  G. Likens,et al.  Chemistry of precipitation from a remote, terrestrial site in Australia , 1987 .

[206]  P. Chylek,et al.  Aerosol and graphitic carbon content of snow , 1987 .

[207]  M. Andreae,et al.  Dimethyl sulfide over the western Atlantic Ocean , 1987 .

[208]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[209]  R. Rauber,et al.  Numerical Simulation of the Effects of Varying Ice Crystal Nucleation Rates and Aggregation Processes on Orographic Snowfall , 1986 .

[210]  J. O'Brien,et al.  Weibull Statistics of Wind Speed over the Ocean , 1986 .

[211]  R. Duce THE IMPACT OF ATMOSPHERIC NITROGEN, PHOSPHORUS, AND IRON SPECIES ON , 1986 .

[212]  Christer Morales The airborne transport of Saharan dust: A review , 1986 .

[213]  F. Giorgi Development of AN Atmospheric Aerosol Model for Studies of Global Budgets and Effects of Airborne Particulate Material , 1986 .

[214]  M. Andreae,et al.  Vertical distribution of dimethylsulphide in the marine atmosphere , 1986, Nature.

[215]  G. Ayers,et al.  Sulfate and methanesulfonate in the maritime aerosol at Cape Grim, Tasmania , 1986 .

[216]  Yutaka Ishizaka,et al.  Volume and mass of yellow sand dust in the air over Japan as estimated from atmospheric turbidity. , 1986 .

[217]  D. M. Doyle,et al.  Whitecaps and Global Fluxes , 1986 .

[218]  K. T. Whitby,et al.  Simulation of Aerosol Dynamics: A Comparative Review of Mathematical Models , 1986 .

[219]  P. D. Houmere,et al.  Dimethyl sulfide in the marine atmosphere , 1985 .

[220]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[221]  Antony D. Clarke,et al.  Soot in the Arctic snowpack: a cause for perturbations in radiative transfer , 1985 .

[222]  J. Galloway The Deposition of Sulfur and Nitrogen from the Remote Atmosphere Background Paper , 1985 .

[223]  R. Charlson,et al.  Measurement of the removal rate of elemental carbon from the atmosphere , 1984 .

[224]  W. Jaeschke,et al.  Measurements of H2S and SO2 over the Atlantic Ocean , 1984 .

[225]  J. Galloway,et al.  The composition of precipitation on Amsterdam Island, Indian Ocean , 1984 .

[226]  G. Lambert,et al.  Exchange Rates of Dimethyl Sulfide between Ocean and Atmosphere , 1984 .

[227]  B. Bonsang,et al.  The role of the ocean in the global atmospheric sulfur cycle , 1983 .

[228]  J. Heintzenberg,et al.  SO 2 and SO 4 = in the arctic: interpretation of observations at three Norwegian arctic-subarctic stations , 1983 .

[229]  Joseph M. Prospero,et al.  Transport of mineral aerosol from Asia Over the North Pacific Ocean , 1983 .

[230]  W. Zoller,et al.  Asian Dust: Seasonal Transport to the Hawaiian Islands , 1983, Science.

[231]  E. Matthews Global Vegetation and Land Use: New High-Resolution Data Bases for Climate Studies , 1983 .

[232]  G. d’Almeida,et al.  Number, Mass and Volume Distributions of Mineral Aerosol and Soils of the Sahara , 1983 .

[233]  J. Servant,et al.  The origins of sulfur compounds in the atmosphere of a zone of high productivity (Gulf of Guinea) , 1982 .

[234]  G. Likens,et al.  The composition of precipitation in remote areas of the world , 1982 .

[235]  D. Gillette,et al.  Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air , 1982 .

[236]  R. Duce,et al.  Sea-salt and the acidity of marine rain on the windward Coast of Samoa , 1982 .

[237]  S. Schwartz,et al.  In-cloud and below-cloud scavenging of Nitric acid vapor , 1982 .

[238]  M. Joseph Eolian transport to the world ocean , 1981 .

[239]  J. Prospero,et al.  Atmospheric transport of soil dust from Africa to South America , 1981, Nature.

[240]  R. Jaenicke,et al.  Saharan dust transport over the North Atlantic Ocean , 1981 .

[241]  G. Lambert,et al.  Sulfate enrichment in marine aerosols owing to biogenic gaseous sulfur compounds , 1980 .

[242]  Dale A. Gillette,et al.  Threshold velocities for input of soil particles into the air by desert soils , 1980 .

[243]  William R. Cotton,et al.  A Numerical Investigation of Several Factors Contributing to the Observed Variable Intensity of Deep Convection over South Florida , 1980 .

[244]  J. Klett,et al.  Microphysics of Clouds and Precipitation , 1978, Nature.

[245]  G. Mellor,et al.  A numerical simulation of BOMEX data using a turbulence closure model coupled with ensemble cloud relations , 1979 .

[246]  J. Prospero Mineral and sea salt aerosol concentrations in various ocean regions , 1979 .

[247]  Dale A. Gillette,et al.  A wind tunnel simulation of the erosion of soil: Effect of soil texture, sandblasting, wind speed, and soil consolidation on dust production , 1978 .

[248]  K. T. Whitby THE PHYSICAL CHARACTERISTICS OF SULFUR AEROSOLS , 1978 .

[249]  B. Hicks,et al.  Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation , 1977 .

[250]  J. Prospero,et al.  Dust Concentration in the Atmosphere of the Equatorial North Atlantic: Possible Relationship to the Sahelian Drought , 1977, Science.

[251]  E. M. Patterson,et al.  Commonalities in measured size distributions for aerosols having a soil-derived component , 1977 .

[252]  K. T. Whitby,et al.  Characterization of California aerosols—II. Aerosol size distribution measurements in the Mojave Desert☆ , 1975 .