Lattice Points and Simultaneous Core Partitions

We observe that for a and b relatively prime, the "abacus construction" identifies the set of simultaneous (a,b)-core partitions with lattice points in a rational simplex. Furthermore, many statistics on (a,b)-cores are piecewise polynomial functions on this simplex. We apply these results to rational Catalan combinatorics. Using Ehrhart theory, we reprove Anderson's theorem that there are (a+b-1)!/a!b! simultaneous (a,b)-cores, and using Euler-Maclaurin theory we prove Armstrong's conjecture that the average size of an (a,b)-core is (a+b+1)(a-1)(b-1)/24. Our methods also give new derivations of analogous formulas for the number and average size of self-conjugate (a,b)-cores. We conjecture a unimodality result for q rational Catalan numbers, and make preliminary investigations in applying these methods to the (q,t)-symmetry and specialization conjectures. We prove these conjectures for low degree terms and when a=3, connecting them to the Catalan hyperplane arrangement and quadratic permutation statistics.

[1]  William Y.C. Chen,et al.  Average Size of a Self-conjugate (s, t)-Core Partition , 2014 .

[2]  Federico Ardila,et al.  The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial , 2014, 1412.4563.

[3]  H. Markwig,et al.  Wall crossings for double Hurwitz numbers , 2011 .

[4]  Carla D. Savage,et al.  The Geometry of Lecture Hall Partitions and Quadratic Permutation Statistics , 2010 .

[5]  R. Stanley An Introduction to Hyperplane Arrangements , 2007 .

[6]  Richard P. Stanley,et al.  The Catalan Case of Armstrong's Conjecture on Simultaneous Core Partitions , 2015, SIAM J. Discret. Math..

[7]  Evgeny Gorsky,et al.  Compactified Jacobians and q,t-Catalan numbers, II , 2014 .

[8]  J. Lawrence Polytope volume computation , 1991 .

[9]  Tyrrell B. McAllister,et al.  Quasi-period collapse and GL_n(Z)-scissors congruence in rational polytopes , 2007, 0709.4070.

[10]  S. Robins,et al.  Computing the Continuous Discretely , 2015 .

[11]  M. Brion Points entiers dans les polyèdres convexes , 1988 .

[12]  I. Gordon,et al.  Catalan numbers for complex reflection groups , 2009, 0912.1578.

[13]  A New Cohomology Theory of Orbifold , 2000, math/0004129.

[14]  George Lusztig,et al.  Fixed Point Varieties on the Space of Lattices , 1991 .

[15]  Dennis Stanton,et al.  CRANKS AND T -CORES , 1990 .

[16]  A. Stapledon Weighted Ehrhart Theory and Orbifold Cohomology , 2007, 0711.4382.

[17]  Jaclyn Anderson,et al.  Partitions which are simultaneously t1- and t2-core , 2002, Discret. Math..

[18]  Frank Sottile,et al.  (Formulas of Brion, Lawrence, and Varchenko on rational generating functions for cones) , 2009 .

[19]  A. N. Varchenko,et al.  Combinatorics and topology of the disposition of affine hyperplanes in real space , 1987 .

[20]  Mikhail Mazin,et al.  Affine permutations and rational slope parking functions , 2014, 1403.0303.

[21]  Christopher R. H. Hanusa,et al.  Results and conjectures on simultaneous core partitions , 2013, Eur. J. Comb..

[22]  Amol Aggarwal Armstrong's conjecture for (k, mk+1)-core partitions , 2015, Eur. J. Comb..

[23]  Lawrence Sze,et al.  Self-conjugate simultaneous p- and q-core partitions and blocks of An , 2009 .

[24]  Ben Kane,et al.  On simultaneous s-cores/t-cores , 2009, Discret. Math..

[25]  Evgeny Gorsky,et al.  Compactified Jacobians and q,t-Catalan numbers, II , 2012, Journal of Algebraic Combinatorics.

[26]  R. Dijkgraaf,et al.  Instantons on ALE spaces and orbifold partitions , 2007, 0712.1427.

[27]  G. James,et al.  The Representation Theory of the Symmetric Group , 2009 .