A Bayesian semiparametric approach to stochastic frontiers and productivity

Abstract In this paper we take up the analysis of production functions / frontiers removing the assumptions of known functional form for the productivity equation, given the heterogeneity of productivity and the endogeneity of inputs at firm level. The assumption of exogenous regressors is removed through taking account of the first order conditions of profit maximization. We introduce latent dynamic stochastic productivity in our framework and perform Bayesian analysis using a Sequential Monte Carlo Particle-Filtering approach. We investigate the performance of the new approach relative to alternative methods in the literature, in a substantive application to Indian non-financial firms, and find that total factor productivity (TFP) growth has remained stagnant at firm level in India despite rapid growth at the aggregate level, with technical efficiency or catching-up effect driving TFP growth in the recent years rather than technological progress or frontier shift.

[1]  Peter Schmidt,et al.  Endogeneity in Stochastic Frontier Models , 2016 .

[2]  Sumru Altug,et al.  The Effect of Work Experience on Female Wages and Labour Supply , 1998 .

[3]  Fotios Pasiouras,et al.  Assessing Bank Efficiency and Performance with Operational Research and Artificial Intelligence Techniques: A Survey , 2009, Eur. J. Oper. Res..

[4]  Kien C. Tran,et al.  GMM estimation of stochastic frontier model with endogenous regressors , 2013 .

[5]  Ruey S. Tsay,et al.  High Dimensional Dynamic Stochastic Copula Models , 2014 .

[6]  Jenny Pange,et al.  Estimating Malmquist productivity indexes using probabilistic directional distances: An application to the European banking sector , 2017, Eur. J. Oper. Res..

[7]  Peter Schmidt,et al.  Using Copulas to Model Time Dependence in Stochastic Frontier Models , 2014 .

[8]  L. Wasserman,et al.  Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .

[9]  S. Mallick,et al.  The skill premium effect of technological change: New evidence from United States manufacturing , 2017 .

[10]  Nickolaos G. Tzeremes,et al.  CEO compensation and bank efficiency: An application of conditional nonparametric frontiers , 2016, Eur. J. Oper. Res..

[11]  S. Mallick,et al.  Productivity Performance of Export Market Entry and Exit: Evidence from Indian Firms , 2013 .

[12]  James A. Levinsohn,et al.  Estimating Production Functions Using Inputs to Control for Unobservables , 2003 .

[13]  Sungho Park,et al.  Handling Endogenous Regressors by Joint Estimation Using Copulas , 2012, Mark. Sci..

[14]  Nickolaos G. Tzeremes Efficiency dynamics in Indian banking: A conditional directional distance approach , 2015, Eur. J. Oper. Res..

[15]  P. Schmidt,et al.  Production frontiers with cross-sectional and time-series variation in efficiency levels , 1990 .

[16]  James J. Heckman,et al.  The identifiability of the competing risks model , 1989 .

[17]  Subal C. Kumbhakar,et al.  Productivity and efficiency estimation: A semiparametric stochastic cost frontier approach , 2015, Eur. J. Oper. Res..

[18]  Mike G. Tsionas,et al.  Zero-inefficiency stochastic frontier models with varying mixing proportion: A semiparametric approach , 2016, Eur. J. Oper. Res..

[19]  A. Pakes,et al.  The Dynamics of Productivity in the Telecommunications Equipment Industry , 1992 .

[20]  Lung-fei Lee Generalized Econometric Models with Selectivity , 1983 .

[21]  A. Doucet,et al.  Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.

[22]  Daniel A. Ackerberg,et al.  Identification Properties of Recent Production Function Estimators , 2015 .

[23]  Hirofumi Fukuyama,et al.  Modelling bank performance: A network DEA approach , 2017, Eur. J. Oper. Res..

[24]  Ioannis Bournakis,et al.  TFP estimation at firm level: The fiscal aspect of productivity convergence in the UK , 2017 .

[25]  Ulrich Doraszelski,et al.  R&D and Productivity: Estimating Endogenous Productivity , 2013 .

[26]  J. Haidar Trade and productivity : Self-selection or learning-by-exporting in India ☆ , 2012 .

[27]  Giancarlo Ferrara,et al.  Semiparametric stochastic frontier models: A generalized additive model approach , 2017, Eur. J. Oper. Res..

[28]  Amil Petrin,et al.  Estimating production functions with control functions when capital is measured with error , 2016 .

[29]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .