First observation of the coexistence of multiple chiral doublet bands and pseudospin doublet bands in the A ≈ 80 mass region

[1]  G. Jaworski,et al.  Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations , 2020 .

[2]  S. Juutinen,et al.  Multiple chiral bands in $$^{137}$$Nd , 2020, The European Physical Journal A.

[3]  J. Meng,et al.  Selection rules of electromagnetic transitions for chirality-parity violation in atomic nuclei. , 2020, Science bulletin.

[4]  Q. B. Chen,et al.  Coexistence of planar and aplanar rotations in 195Tl , 2020, Physics Letters B.

[5]  J. Meng,et al.  Novel Excitation Modes in Nuclei: Experimental and Theoretical Investigation on Multiple Chiral Doublets , 2020 .

[6]  Q. B. Chen,et al.  Possible chiral doublets in 60Ni , 2019, Physics Letters B.

[7]  J. Meng,et al.  Multiple chiral doublet bands with octupole correlations in reflection-asymmetric triaxial particle rotor model , 2019, Physics Letters B.

[8]  S. Y. Wang,et al.  Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: triplet bands in 105Ag , 2018, Journal of Physics G: Nuclear and Particle Physics.

[9]  Yuanyuan Wang,et al.  Nuclear chiral doublet bands data tables , 2018, Atomic Data and Nuclear Data Tables.

[10]  R. Palit,et al.  Observation of multiple doubly degenerate bands in 195Tl , 2018, Physics Letters B.

[11]  S. Zhang,et al.  Chiral geometry and rotational structure for 130Cs in the projected shell model , 2018, Physics Letters B.

[12]  A. Raduta Specific features and symmetries for magnetic and chiral bands in nuclei , 2016, 1705.08220.

[13]  J. Meng,et al.  Nuclear chiral and magnetic rotation in covariant density functional theory , 2016, 1604.02213.

[14]  Haozhao Liang,et al.  Hidden pseudospin and spin symmetries and their origins in atomic nuclei , 2014, 1411.6774.

[15]  J. Meng,et al.  Progress on tilted axis cranking covariant density functional theory for nuclear magnetic and antimagnetic rotation , 2013, 1301.1808.

[16]  S. Majola,et al.  The first candidate for chiral nuclei in the A∼80 mass region: 80Br , 2011, 1107.5109.

[17]  H. Liang,et al.  Novel structure for magnetic rotation bands in 60Ni , 2011, 1101.4547.

[18]  J. Meng,et al.  Open problems in understanding the nuclear chirality , 2010, 1002.0907.

[19]  S. Roy,et al.  Effect of p g 9 / 2 and ? g 9 / 2 alignments in the shape of 75Br from lifetime measurement , 2009 .

[20]  S. Y. Wang,et al.  Chirality in odd-A nucleus 135Nd in particle rotor model , 2008, 0812.4597.

[21]  M. Lipoglavšek,et al.  Aspects of nuclear physics research at iThemba LABS, South Africa , 2005 .

[22]  J. Ginocchio Relativistic symmetries in nuclei and hadrons , 2005 .

[23]  A. Lampinen,et al.  High-spin spectroscopy of the 142Eu, 143Eu and 144Eu nuclei , 1996 .

[24]  G. Duchêne,et al.  Calibration of the new composite ``clover'' detector as a Compton polarimeter for the EUROGAM array , 1995 .

[25]  L. Funke,et al.  Three-quasiparticle excitations in 81Kr , 1986 .

[26]  L. Funke,et al.  Shape change and fast M1 transitions in 81Kr , 1983 .