Sparse Multidimensional Representations using Anisotropic Dilation and Shear Operators
暂无分享,去创建一个
[1] Mark J. T. Smith,et al. A filter bank for the directional decomposition of images: theory and design , 1992, IEEE Trans. Signal Process..
[2] G. Weiss,et al. A First Course on Wavelets , 1996 .
[3] S. Mallat. A wavelet tour of signal processing , 1998 .
[4] Pierre Vandergheynst,et al. Directional Wavelets Revisited: Cauchy Wavelets and Symmetry Detection in Patterns , 1999 .
[5] E. Candès,et al. Ridgelets: a key to higher-dimensional intermittency? , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[6] Guido Weiss,et al. The Mathematical Theory of Wavelets , 2001 .
[7] N. Kingsbury. Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .
[8] E. Candès,et al. Continuous Curvelet Transform : I . Resolution of the Wavefront Set , 2003 .
[9] E. Candès,et al. Continuous curvelet transform , 2003 .
[10] Wang-Q Lim,et al. Wavelets with composite dilations , 2004 .
[11] E. Candès,et al. New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities , 2004 .
[12] Minh N. Do,et al. Ieee Transactions on Image Processing the Contourlet Transform: an Efficient Directional Multiresolution Image Representation , 2022 .
[13] Wang-Q Lim,et al. Sparse multidimensional representation using shearlets , 2005, SPIE Optics + Photonics.
[14] E. Candès,et al. Continuous curvelet transform: II. Discretization and frames , 2005 .
[15] D. Labate,et al. Resolution of the wavefront set using continuous shearlets , 2006, math/0605375.
[16] Laurent Demanet,et al. Fast Discrete Curvelet Transforms , 2006, Multiscale Model. Simul..
[17] Wang-Q Lim,et al. Wavelets with composite dilations and their MRA properties , 2006 .
[18] Demetrio Labate,et al. Optimally Sparse Multidimensional Representation Using Shearlets , 2007, SIAM J. Math. Anal..