Adhesion of vesicles to curved substrates.

We investigate the adhesion of vesicles, under the influence of a contact potential, to substrates with various geometry. For axisymmetric configurations, we find that the transition from a free vesicle to a bound state depends significantly on the substrate shape. In general, the critical values of the contact potential at which these transitions take place are lower for a concave-shaped substrate than that for a flat-shaped substrate investigated in earlier studies. We observe that the transitions happen at higher critical values of the contact potential when the substrate is convex and illustrate how these critical values depend on the curvature of the substrate. In addition, we construct an approximate analytical solution that predicts the shape of the vesicle for large internal excess pressure and contact potential. The analytical solution leads to an inequality that relates the surface tension with the contact potential.

[1]  L. Addadi,et al.  Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates , 2001, Nature Cell Biology.

[2]  Anna C. Balazs,et al.  Challenges in polymer science : Controlling vesicle-substrate interactions , 2005 .

[3]  E. Evans Minimum energy analysis of membrane deformation applied to pipet aspiration and surface adhesion of red blood cells. , 1980, Biophysical journal.

[4]  R. Lipowsky,et al.  Shape transformations of vesicles with intramembrane domains. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Ou-Yang Zhong-can,et al.  Geometric methods in the elastic theory of membranes in liquid crystal phases , 1999 .

[6]  E. Sackmann,et al.  Supported Membranes: Scientific and Practical Applications , 1996, Science.

[7]  Shamik Sen,et al.  Indentation and adhesive probing of a cell membrane with AFM: theoretical model and experiments. , 2005, Biophysical journal.

[8]  Sarah L Veatch,et al.  Seeing spots: complex phase behavior in simple membranes. , 2005, Biochimica et biophysica acta.

[9]  James T. Jenkins,et al.  The Equations of Mechanical Equilibrium of a Model Membrane , 1977 .

[10]  R. Waugh,et al.  Thermoelasticity of red blood cell membrane. , 1979, Biophysical journal.

[11]  Samuel A. Safran,et al.  Dynamics of cell orientation , 2007 .

[12]  Geometry of lipid vesicle adhesion. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. Safran,et al.  Limitation of cell adhesion by the elasticity of the extracellular matrix. , 2006, Biophysical journal.

[14]  Seifert,et al.  Adhesion of vesicles. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[15]  Wrapping of a spherical colloid by a fluid membrane , 2002, cond-mat/0212421.

[16]  Nir S. Gov,et al.  Physics of cell elasticity, shape and adhesion , 2005 .

[17]  Seifert,et al.  Budding transitions of fluid-bilayer vesicles: The effect of area-difference elasticity. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  M. Angelova,et al.  Adhesion of Latex Spheres to Giant Phospholipid Vesicles: Statics and Dynamics , 1997 .

[19]  H. W. Veen,et al.  Handbook of Biological Physics , 1996 .

[20]  W. Gelbart,et al.  Adhesion and Wrapping in Colloid−Vesicle Complexes , 2002 .

[21]  U. Seifert,et al.  Hydrodynamics of membranes: the bilayer aspect and adhesion , 1994 .

[22]  Qiang Du,et al.  Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions , 2006, J. Comput. Phys..

[23]  Huajian Gao,et al.  Two-dimensional model of vesicle adhesion on curved substrates , 2006 .

[24]  W. Helfrich Elastic Properties of Lipid Bilayers: Theory and Possible Experiments , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[25]  Watt W. Webb,et al.  Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension , 2003, Nature.

[26]  R. Mukhopadhyay,et al.  Stomatocyte–discocyte–echinocyte sequence of the human red blood cell: Evidence for the bilayer– couple hypothesis from membrane mechanics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Seifert,et al.  Adhesion of vesicles in two dimensions. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[28]  U. Seifert,et al.  Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory , 1996, cond-mat/9612151.

[29]  Erich Sackmann,et al.  Bending elastic moduli of lipid bilayers : modulation by solutes , 1990 .

[30]  J. Jenkins,et al.  Static equilibrium configurations of a model red blood cell , 1977, Journal of mathematical biology.

[31]  M. Ben Amar,et al.  Budding and fission of a multiphase vesicle , 2005, The European physical journal. E, Soft matter.

[32]  Benjamin Geiger,et al.  Cell mechanosensitivity controls the anisotropy of focal adhesions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Udo Seifert,et al.  Configurations of fluid membranes and vesicles , 1997 .

[34]  J. Groves,et al.  Bending mechanics and molecular organization in biological membranes. , 2007, Annual review of physical chemistry.

[35]  M. Dembo,et al.  Cell movement is guided by the rigidity of the substrate. , 2000, Biophysical journal.

[36]  J. Jenkins,et al.  A higher-order boundary layer analysis for lipid vesicles with two fluid domains , 2008, Journal of Fluid Mechanics.

[37]  Markus Deserno,et al.  Elastic deformation of a fluid membrane upon colloid binding. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  P. Swain,et al.  Supported membranes on chemically structured and rough surfaces. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[40]  Martin Michael Müller,et al.  Contact lines for fluid surface adhesion. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[42]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[43]  Yajun Yin,et al.  Theoretical analysis of adhering lipid vesicles with free edges. , 2005, Colloids and surfaces. B, Biointerfaces.

[44]  David Andelman,et al.  The Influence of Substrate Structure on Membrane Adhesion , 1999 .

[45]  W. Webb,et al.  Membrane elasticity in giant vesicles with fluid phase coexistence. , 2005, Biophysical journal.

[46]  A. Besser,et al.  Force-induced adsorption and anisotropic growth of focal adhesions. , 2006, Biophysical journal.

[47]  Seifert,et al.  Vesicular instabilities: The prolate-to-oblate transition and other shape instabilities of fluid bilayer membranes. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[48]  Q. Du,et al.  A phase field approach in the numerical study of the elastic bending energy for vesicle membranes , 2004 .

[49]  R. Lipowsky,et al.  Vesicles in contact with nanoparticles and colloids , 1998 .

[50]  C. Misbah,et al.  Vesicles in haptotaxis with hydrodynamical dissipation , 2003, The European physical journal. E, Soft matter.