Loop-extruding Smc5/6 organizes transcription-induced positive DNA supercoils

The Structural Maintenance of Chromosome (SMC) protein complexes cohesin, condensin and the Smc5/6 complex (Smc5/6) are essential for chromosome function. At the molecular level, these complexes fold DNA by loop extrusion. Accordingly, cohesin creates chromosome loops in interphase, and condensin compacts mitotic chromosomes. However, the role of Smc5/6’s recently discovered DNA loop extrusion activity is unknown. Here, we uncover that Smc5/6 associates with transcription-induced positively supercoiled chromosomal DNA at cohesin-dependent chromosome loop boundaries. Mechanistically, single-molecule imaging reveals that dimers of Smc5/6 specifically recognize the tip of positively supercoiled DNA plectonemes, and efficiently initiates loop extrusion to gather the supercoiled DNA into a large plectonemic loop. Finally, Hi-C analysis shows that Smc5/6 links chromosomal regions containing transcription-induced positive supercoiling in cis. Altogether, our findings indicate that Smc5/6 controls the three-dimensional organization of chromosomes by recognizing and initiating loop extrusion on positively supercoiled DNA.

[1]  J. Prados,et al.  Human Smc5/6 recognises transcription-generated positive DNA supercoils , 2023, bioRxiv.

[2]  Ilya M. Flyamer,et al.  Cooltools: Enabling high-resolution Hi-C analysis in Python , 2022, bioRxiv.

[3]  S. Fletcher,et al.  Smc5/6 silences episomal transcription by a three-step function , 2022, Nature Structural & Molecular Biology.

[4]  K. Shirahige,et al.  Cohesin-dependent chromosome loop extrusion is limited by transcription and stalled replication forks , 2022, Science advances.

[5]  Eugene Kim,et al.  The Smc5/6 complex is a DNA loop-extruding motor , 2022, bioRxiv.

[6]  L. Mirny,et al.  Transcription shapes 3D chromatin organization by interacting with loop extrusion , 2022, bioRxiv.

[7]  J. Peters,et al.  SMC complexes can traverse physical roadblocks bigger than their ring size , 2021, bioRxiv.

[8]  Ingmar B. Schäfer,et al.  Nse5/6 inhibits the Smc5/6 ATPase and modulates DNA substrate binding , 2021, The EMBO journal.

[9]  C. Dekker,et al.  Condensin-driven loop extrusion on supercoiled DNA , 2021, Nature Structural & Molecular Biology.

[10]  M. Laub,et al.  High-resolution, genome-wide mapping of positive supercoiling in chromosomes , 2021, bioRxiv.

[11]  J. Rappsilber,et al.  Purified Smc5/6 Complex Exhibits DNA Substrate Recognition and Compaction , 2020, Molecular cell.

[12]  J. Marko,et al.  The Smc5/6 Core Complex Is a Structure-Specific DNA Binding and Compacting Machine. , 2020, Molecular cell.

[13]  X. Darzacq,et al.  Cohesin residency determines chromatin loop patterns , 2020, bioRxiv.

[14]  I. Hickson,et al.  Inducible Degradation of the Human SMC5/6 Complex Reveals an Essential Role Only during Interphase. , 2020, Cell reports.

[15]  Ryuichiro Nakato,et al.  Methods for ChIP-seq analysis: A practical workflow and advanced applications. , 2020, Methods.

[16]  J. Peters,et al.  DNA loop extrusion by human cohesin , 2019, Science.

[17]  Mohammad M. Karimi,et al.  FACT mediates cohesin function on chromatin , 2019, Nature Structural & Molecular Biology.

[18]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[19]  Ilya M. Flyamer,et al.  Coolpup.py: versatile pile-up analysis of Hi-C data , 2019, bioRxiv.

[20]  Nezar Abdennur,et al.  Cooler: scalable storage for Hi-C data and other genomically-labeled arrays , 2019, bioRxiv.

[21]  M. J. Neale,et al.  A nucleotide resolution map of Top2-linked DNA breaks in the yeast and human genome , 2019, Nature Communications.

[22]  M. Laub,et al.  A Bacterial Chromosome Structuring Protein Binds Overtwisted DNA to Stimulate Type II Topoisomerases and Enable DNA Replication , 2018, Cell.

[23]  Cees Dekker,et al.  Real-time imaging of DNA loop extrusion by condensin , 2018, Science.

[24]  J. R. Paulson,et al.  A pathway for mitotic chromosome formation , 2018, Science.

[25]  J. Ellenberg,et al.  Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins , 2017, The EMBO journal.

[26]  Helga Thorvaldsdóttir,et al.  Juicebox.js Provides a Cloud-Based Visualization System for Hi-C Data , 2017, bioRxiv.

[27]  Erez Lieberman Aiden,et al.  Cohesin Loss Eliminates All Loop Domains , 2017, Cell.

[28]  Nuno A. Fonseca,et al.  Two independent modes of chromatin organization revealed by cohesin removal , 2017, Nature.

[29]  C. Dekker,et al.  DNA sequence encodes the position of DNA supercoils , 2017, bioRxiv.

[30]  Erez Lieberman Aiden,et al.  Genome Organization Drives Chromosome Fragility , 2017, Cell.

[31]  Michael D. Wilson,et al.  Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders , 2016, Genome Biology.

[32]  Neva C. Durand,et al.  Juicer Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. , 2016, Cell systems.

[33]  A. Lengronne,et al.  Essential Roles of the Smc5/6 Complex in Replication through Natural Pausing Sites and Endogenous DNA Damage Tolerance , 2015, Molecular cell.

[34]  C. Sjögren,et al.  The Smc5/6 Complex Is an ATP-Dependent Intermolecular DNA Linker. , 2015, Cell reports.

[35]  T. Kunkel,et al.  Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation , 2014, Nature Structural &Molecular Biology.

[36]  Ryuichiro Nakato,et al.  The Chromosomal Association of the Smc5/6 Complex Depends on Cohesion and Predicts the Level of Sister Chromatid Entanglement , 2014, PLoS genetics.

[37]  J. Ellenberg,et al.  Wapl is an essential regulator of chromatin structure and chromosome segregation , 2013, Nature.

[38]  Duncan J. Smith,et al.  Quantitative, genome-wide analysis of eukaryotic replication initiation and termination. , 2013, Molecular cell.

[39]  F. Uhlmann,et al.  Budding Yeast Wapl Controls Sister Chromatid Cohesion Maintenance and Chromosome Condensation , 2013, Current Biology.

[40]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[41]  Cheuk C. Siow,et al.  OriDB, the DNA replication origin database updated and extended , 2011, Nucleic Acids Res..

[42]  A. Aguilera,et al.  Topological constraints impair RNA polymerase II transcription and causes instability of plasmid-borne convergent genes , 2011, Nucleic acids research.

[43]  T. Itoh,et al.  Chromosome length influences replication-induced topological stress , 2011, Nature.

[44]  B. Piña,et al.  Positional dependence of transcriptional inhibition by DNA torsional stress in yeast chromosomes , 2010, The EMBO journal.

[45]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[46]  M. O'Connell,et al.  Smc5/6 maintains stalled replication forks in a recombination‐competent conformation , 2009, The EMBO journal.

[47]  H. Aburatani,et al.  Cohesin mediates transcriptional insulation by CCCTC-binding factor , 2008, Nature.

[48]  J. Haber,et al.  Anaphase Onset Before Complete DNA Replication with Intact Checkpoint Responses , 2007, Science.

[49]  J. Peters,et al.  Wapl Controls the Dynamic Association of Cohesin with Chromatin , 2006, Cell.

[50]  T. Itoh,et al.  Chromosomal association of the Smc5/6 complex reveals that it functions in differently regulated pathways. , 2006, Molecular cell.

[51]  T. Eydmann,et al.  SMC5 and SMC6 genes are required for the segregation of repetitive chromosome regions , 2005, Nature Cell Biology.

[52]  T. Itoh,et al.  Cohesin relocation from sites of chromosomal loading to places of convergent transcription , 2004, Nature.

[53]  JAMES C. Wang,et al.  Cellular roles of DNA topoisomerases: a molecular perspective , 2002, Nature Reviews Molecular Cell Biology.

[54]  K Nasmyth,et al.  Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. , 2000, Molecular cell.

[55]  V. Guacci,et al.  A Direct Link between Sister Chromatid Cohesion and Chromosome Condensation Revealed through the Analysis of MCD1 in S. cerevisiae , 1997, Cell.

[56]  K. Nasmyth,et al.  Cohesins: Chromosomal Proteins that Prevent Premature Separation of Sister Chromatids , 1997, Cell.

[57]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .