Hitting and Harvesting Pumpkins

The $c$-pumpkin is the graph with two vertices linked by $c \geq 1$ parallel edges. A $c$-pumpkin-model in a graph $G$ is a pair $\{A, B\}$ of disjoint subsets of vertices of $G$, each inducing a connected subgraph of $G$, such that there are at least $c$ edges in $G$ between $A$ and $B$. We focus on hitting and packing $c$-pumpkin-models in a given graph in the realm of approximation algorithms and parameterized algorithms. We give a fixed-parameter tractable (FPT) algorithm running in time $2^{\mathcal{O}(k)} n^{\mathcal{O}(1)}$ deciding, for any fixed $c \geq 1$, whether all $c$-pumpkin-models can be hit by at most $k$ vertices. This generalizes known single-exponential FPT algorithms for Vertex Cover and Feedback Vertex Set, which correspond to the cases $c=1,2$ respectively. Finally, we present an $\mathcal{O}(\log n)$-approximation algorithm for both the problems of hitting all $c$-pumpkin-models with a smallest number of vertices and packing a maximum number of vertex-disjoint $c$-pumpkin-models.

[1]  Ge Xia,et al.  Improved upper bounds for vertex cover , 2010, Theor. Comput. Sci..

[2]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[3]  Fedor V. Fomin,et al.  Hitting Forbidden Minors: Approximation and Kernelization , 2010, SIAM J. Discret. Math..

[4]  Bruce A. Reed,et al.  Finding odd cycle transversals , 2004, Oper. Res. Lett..

[5]  Raphael Yuster,et al.  Approximation algorithms and hardness results for cycle packing problems , 2007, ACM Trans. Algorithms.

[6]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[7]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  Ge Xia,et al.  Tight lower bounds for certain parameterized NP-hard problems , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[10]  Fedor V. Fomin,et al.  Iterative compression and exact algorithms , 2010, Theor. Comput. Sci..

[11]  Anders Yeo,et al.  Kernel Bounds for Disjoint Cycles and Disjoint Paths , 2009, ESA.

[12]  Dániel Marx,et al.  Known algorithms on graphs of bounded treewidth are probably optimal , 2010, SODA '11.

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[14]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[15]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, Theory of Computing Systems.

[16]  Mohammad R. Salavatipour,et al.  Approximability of Packing Disjoint Cycles , 2007, Algorithmica.

[17]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[18]  Jan van Leeuwen,et al.  On Interval Routing Schemes and Treewidth , 1995, WG.

[19]  David R. Wood,et al.  Small minors in dense graphs , 2010, Eur. J. Comb..

[20]  Bruno Courcelle,et al.  The monadic second-order logic of graphs III: tree-decompositions, minor and complexity issues , 1992, RAIRO Theor. Informatics Appl..

[21]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[22]  Barry O'Sullivan,et al.  A fixed-parameter algorithm for the directed feedback vertex set problem , 2008, JACM.

[23]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[24]  L. Pósa,et al.  On Independent Circuits Contained in a Graph , 1965, Canadian Journal of Mathematics.

[25]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[26]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[27]  B. Mohar,et al.  Graph Minors , 2009 .

[28]  Geevarghese Philip,et al.  A single-exponential FPT algorithm for the K4-minor cover problem , 2012, J. Comput. Syst. Sci..

[29]  Samuel Fiorini,et al.  Hitting Diamonds and Growing Cacti , 2009, IPCO.

[30]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[31]  Dan Geiger,et al.  Optimization of Pearl's Method of Conditioning and Greedy-Like Approximation Algorithms for the Vertex Feedback Set Problem , 1996, Artif. Intell..

[32]  Michael R. Fellows,et al.  An Improved Fixed-Parameter Algorithm for Vertex Cover , 1998, Inf. Process. Lett..

[33]  Rolf Niedermeier,et al.  Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization , 2006, J. Comput. Syst. Sci..

[34]  Jianer Chen,et al.  On Feedback Vertex Set New Measure and New Structures , 2010, SWAT.

[35]  Michael Lampis,et al.  Algorithmic Meta-theorems for Restrictions of Treewidth , 2010, Algorithmica.