Nonlinear scale-space
暂无分享,去创建一个
[1] Jan J. Koenderink,et al. Solid shape , 1990 .
[2] Philippe Saint-Marc,et al. Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..
[3] S Grossberg,et al. Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance , 1984, Perception & Psychophysics.
[4] John Forge. Measurement, realism, and objectivity : essays on measurement in the social and physical sciences , 1987 .
[5] David Eberly,et al. A Differential Geometric Approach to Anisotropic Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.
[6] Max A. Viergever,et al. Scale-Space: Its Natural Operators and Differential Invariants , 1991, IPMI.
[7] P. Lions,et al. Axioms and fundamental equations of image processing , 1993 .
[8] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[9] Tony Lindeberg,et al. Shape from texture from a multi-scale perspective , 1993, 1993 (4th) International Conference on Computer Vision.
[10] M. Friedman. Foundations of space-time theories : relativistic physics and philosophy of science , 1986 .
[11] J. A. Schouten,et al. Der Ricci-Kalkül: Eine Einführung in die Neueren Methoden und Probleme der Mehrdimensionalen Differentialgeometrie , 2022 .
[12] Max A. Viergever,et al. Scale and the differential structure of images , 1992, Image Vis. Comput..
[13] Jan J. Koenderink. Local image structure , 1992 .
[14] J. Norton. Coordinates and covariance: Einstein's view of space-time and the modern view , 1989 .
[15] G. C. Cheng. Pictorial pattern recognition , 1969, Pattern Recognit..
[16] D. Raine. General relativity , 1980, Nature.
[17] Jayant Shah. Segmentation by nonlinear diffusion. II , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[18] S. Grossberg,et al. Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.
[19] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[20] Niklas Nordström,et al. Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..
[21] Ross T. Whitaker,et al. A multi-scale approach to nonuniform diffusion , 1993 .
[22] Tony Lindeberg,et al. Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.
[23] E. Cartan,et al. Leçons sur la géométrie des espaces de Riemann , 1928 .
[24] Yehoshua Y. Zeevi,et al. Image analysis by wavelet-type transforms: Group theoretic approach , 1993 .
[25] J. Norton. EINSTEIN, THE HOLE ARGUMENT AND THE REALITY OF SPACE , 1987 .
[26] Tony Lindeberg,et al. Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[27] Bart M. ter Haar Romeny,et al. Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.
[28] P. Lions,et al. Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .
[29] R. Whitaker. Geometry-limited diffusion in the characterization of geometric patches in images , 1993 .
[30] Max A. Viergever,et al. Images: Regular Tempered Distributions , 1994 .
[31] Andrew P. Witkin,et al. Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[32] D. F. Lawden. An introduction to tensor calculus and relativity , 1962 .
[33] William H. Press,et al. Problem Book in Relativity and Gravitation , 1975 .
[34] Jitendra Malik,et al. Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..