Nonlinear scale-space

We propose a generalisation of scale-space theory for scalar images. The starting point is the assumption that the conventional Gaussian model constitutes an unbiased (that is, task independent), multiscale image representation. A generalised scale-space is then considered as a conventional scale-space “in disguise”, representing the data in a format that is more convenient for specific applications. Although formally equivalent to the conventional representation (at least locally), a generalised representation may be more apt for a dedicated task. In particular, it may potentially solve the so-called “localisation problem” of linear scale-space. Several models based on nonlinear diffusion have emerged by the desire to deal with this problem. The proposed theory provides a unifying framework for a variety of such models that can be related to conventional scale-space in a one-to-one way.

[1]  Jan J. Koenderink,et al.  Solid shape , 1990 .

[2]  Philippe Saint-Marc,et al.  Adaptive Smoothing: A General Tool for Early Vision , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  S Grossberg,et al.  Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance , 1984, Perception & Psychophysics.

[4]  John Forge Measurement, realism, and objectivity : essays on measurement in the social and physical sciences , 1987 .

[5]  David Eberly,et al.  A Differential Geometric Approach to Anisotropic Diffusion , 1994, Geometry-Driven Diffusion in Computer Vision.

[6]  Max A. Viergever,et al.  Scale-Space: Its Natural Operators and Differential Invariants , 1991, IPMI.

[7]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[8]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[9]  Tony Lindeberg,et al.  Shape from texture from a multi-scale perspective , 1993, 1993 (4th) International Conference on Computer Vision.

[10]  M. Friedman Foundations of space-time theories : relativistic physics and philosophy of science , 1986 .

[11]  J. A. Schouten,et al.  Der Ricci-Kalkül: Eine Einführung in die Neueren Methoden und Probleme der Mehrdimensionalen Differentialgeometrie , 2022 .

[12]  Max A. Viergever,et al.  Scale and the differential structure of images , 1992, Image Vis. Comput..

[13]  Jan J. Koenderink Local image structure , 1992 .

[14]  J. Norton Coordinates and covariance: Einstein's view of space-time and the modern view , 1989 .

[15]  G. C. Cheng Pictorial pattern recognition , 1969, Pattern Recognit..

[16]  D. Raine General relativity , 1980, Nature.

[17]  Jayant Shah Segmentation by nonlinear diffusion. II , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[18]  S. Grossberg,et al.  Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena , 1988, Perception & psychophysics.

[19]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[20]  Niklas Nordström,et al.  Biased anisotropic diffusion: a unified regularization and diffusion approach to edge detection , 1990, Image Vis. Comput..

[21]  Ross T. Whitaker,et al.  A multi-scale approach to nonuniform diffusion , 1993 .

[22]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[23]  E. Cartan,et al.  Leçons sur la géométrie des espaces de Riemann , 1928 .

[24]  Yehoshua Y. Zeevi,et al.  Image analysis by wavelet-type transforms: Group theoretic approach , 1993 .

[25]  J. Norton EINSTEIN, THE HOLE ARGUMENT AND THE REALITY OF SPACE , 1987 .

[26]  Tony Lindeberg,et al.  Scale-Space for Discrete Signals , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Bart M. ter Haar Romeny,et al.  Geometry-Driven Diffusion in Computer Vision , 1994, Computational Imaging and Vision.

[28]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .

[29]  R. Whitaker Geometry-limited diffusion in the characterization of geometric patches in images , 1993 .

[30]  Max A. Viergever,et al.  Images: Regular Tempered Distributions , 1994 .

[31]  Andrew P. Witkin,et al.  Uniqueness of the Gaussian Kernel for Scale-Space Filtering , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  D. F. Lawden An introduction to tensor calculus and relativity , 1962 .

[33]  William H. Press,et al.  Problem Book in Relativity and Gravitation , 1975 .

[34]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..