Latent heat thermal energy storage in a shell-tube: A wavy partial layer of metal foam over tubes

[1]  S. Dhahbi,et al.  A hybrid solidification enhancement in a latent-heat storage system with nanoparticles, porous foam, and fin-aided foam strips , 2022, Journal of Energy Storage.

[2]  H. Mohammed,et al.  Solidification of a nano-enhanced phase change material (NePCM) in a double elliptical latent heat storage unit with wavy inner tubes , 2022, Solar Energy.

[3]  Chen Ding,et al.  Numerical investigation on melting behaviour of phase change materials/metal foam composites under hypergravity conditions , 2022, Applied Thermal Engineering.

[4]  Xiang Yu,et al.  Temperature control performance of high thermal conductivity metal foam/paraffin composite phase change material: An experimental study , 2022, Journal of Energy Storage.

[5]  H. Ali Heat transfer augmentation of porous media (metallic foam) and phase change material based heat sink with variable heat generations: An experimental evaluation , 2022, Sustainable Energy Technologies and Assessments.

[6]  H. Ali,et al.  Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets , 2022, International Journal of Heat and Mass Transfer.

[7]  Jun Lu,et al.  Numerical study on the influence of inclination angle on the melting behaviour of metal foam-PCM latent heat storage units , 2021, Energy.

[8]  Chen Ding,et al.  Thermal performance evaluation of latent heat storage systems with plate fin-metal foam hybrid structure , 2021 .

[9]  Jinyue Yan,et al.  Effect of fin-metal foam structure on thermal energy storage: An experimental study , 2021, Renewable Energy.

[10]  Wen Ye,et al.  Heat transfer enhancement in latent heat thermal energy storage using copper foams with varying porosity , 2021 .

[11]  A. Ranjbar,et al.  Performance enhancement of a thermoelectric harvester with a PCM/Metal foam composite , 2021 .

[12]  Paulo Cesar Tabares-Velasco,et al.  Empirical validation and comparison of methodologies to simulate micro and macro-encapsulated PCMs in the building envelope , 2021 .

[13]  R. Senthil,et al.  A review on container geometry and orientations of phase change materials for solar thermal systems , 2021 .

[14]  L. Tan,et al.  Heat transfer enhancement of nano-encapsulated phase change material (NEPCM) using metal foam for thermal energy storage , 2021 .

[15]  Yuying Yan,et al.  A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage , 2021, Renewable and Sustainable Energy Reviews.

[16]  Rishabh Chaturvedi,et al.  A review on the applications of PCM in thermal storage of solar energy , 2021 .

[17]  N. Sidik,et al.  Evaluation and Improvement of Thermal Energy of Heat Exchangers with SWCNT, GQD Nanoparticles and PCM (RT82) , 2020, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.

[18]  Satyender Singh,et al.  Numerical thermal performance investigation of phase change material integrated wavy finned single pass solar air heater , 2020 .

[19]  F. He,et al.  Filling copper foam partly on thermal behavior of phase-change material in a rectangular enclosure , 2020 .

[20]  A. Palacios,et al.  Review on phase change materials for cold thermal energy storage applications , 2020 .

[21]  A. Bhattacharya,et al.  Effect of convection on melting characteristics of phase change material-metal foam composite thermal energy storage system , 2020 .

[22]  Huiying Wu,et al.  Thermal transport process of metal foam/paraffin composite (MFPC) with solid-liquid phase change: An experimental study , 2020 .

[23]  N. Sidik,et al.  Optimization of Thermal Conductivity of NanoPCM-Based Graphene by Response Surface Methodology , 2020, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences.

[24]  F. He,et al.  Effect of porosity and pore density of copper foam on thermal performance of the paraffin-copper foam composite Phase-Change Material , 2020 .

[25]  J. A. Esfahani,et al.  Improving the melting performance of PCM thermal energy storage with novel stepped fins , 2020 .

[26]  J. Luan,et al.  Preparation and characterization of paraffin microencapsulated phase change material with double shell for thermal energy storage , 2020 .

[27]  F. Bruno,et al.  A review of numerical modelling of high-temperature phase change material composites for solar thermal energy storage , 2020 .

[28]  Changying Zhao,et al.  Molecular dynamics simulation of nanoparticle effect on melting enthalpy of paraffin phase change material , 2020 .

[29]  M. Gillott,et al.  Numerical study of a multiple-segment metal foam-PCM latent heat storage unit: Effect of porosity, pore density and location of heat source , 2019, Energy.

[30]  Yulong Ding,et al.  A review of performance investigation and enhancement of shell and tube thermal energy storage device containing molten salt based phase change materials for medium and high temperature applications , 2019 .

[31]  Qiuwan Wang,et al.  A three-dimensional pore-scale lattice Boltzmann model for investigating the supergravity effects on charging process , 2019, Applied Energy.

[32]  Wei-Biao Ye,et al.  Effect of aspect ratio on saturated boiling flow in microchannels with nonuniform heat flux , 2019, Heat Transfer-Asian Research.

[33]  Ya-Ling He,et al.  Thermal response of annuli filled with metal foam for thermal energy storage: An experimental study , 2019, Applied Energy.

[34]  Wei-Biao Ye,et al.  Numerical investigation of hydrodynamic and heat transfer performances of nanofluids in a fractal microchannel heat sink , 2019, Heat Transfer-Asian Research.

[35]  Sourav Khanna,et al.  An experimental and numerical study on the effect of inclination angle of phase change materials thermal energy storage system , 2019, Journal of Energy Storage.

[36]  M. K. Rathod,et al.  Thermal transport augmentation in latent heat thermal energy storage system by partially filled metal foam: A novel configuration , 2019, Journal of Energy Storage.

[37]  Ya-Ling He,et al.  Effect of inclination on the thermal response of composite phase change materials for thermal energy storage , 2019, Applied Energy.

[38]  Shuangfeng Wang,et al.  Turbulent thermal-hydraulic and thermodynamic characteristics in a traverse corrugated tube fitted with twin and triple wire coils , 2019, International Journal of Heat and Mass Transfer.

[39]  Wang Changhong,et al.  Thermal performance of copper foam/paraffin composite phase change material , 2018 .

[40]  Wei-Biao Ye Finite volume analysis the thermal behavior of electrode non-uniformity , 2017 .

[41]  F. Bruno,et al.  Experimental investigation of the effect of inclination angle on convection-driven melting of phase change material in a rectangular enclosure , 2014 .

[42]  Peng Zhang,et al.  Preparation and thermal characterization of paraffin/metal foam composite phase change material , 2013 .

[43]  Gustaf Söderlind,et al.  Adaptive Time-Stepping and Computational Stability , 2006 .

[44]  R. Mahajan,et al.  Thermophysical properties of high porosity metal foams , 2002 .