The clustering of galaxies at z ≈ 0.5 in the SDSS-III Data Release 9 BOSS-CMASS sample: a test for the ΛCDM cosmology

We present results on the clustering of 282 068 galaxies in the Baryon Oscillation Spectroscopic Survey (BOSS) sample of massive galaxies with redshifts 0.4 < z < 0.7 which is part of the Sloan Digital Sky Survey III project. Our results cover a large range of scales from ∼500 to ∼90 h−1 Mpc. We compare these estimates with the expectations of the flat Λ cold dark matter (ΛCDM) standard cosmological model with parameters compatible with Wilkinson Microwave Anisotropy Probe 7 data. We use the MultiDark cosmological simulation, one of the largest N-body runs presently available, together with a simple halo abundance matching technique, to estimate galaxy correlation functions, power spectra, abundance of subhaloes and galaxy biases. We find that the ΛCDM model gives a reasonable description to the observed correlation functions at z ≈ 0.5, which is remarkably good agreement considering that the model, once matched to the observed abundance of BOSS galaxies, does not have any free parameters. However, we find a ≳10 per cent deviation in the correlation functions for scales ≲ 1 and ∼10–40 h−1 Mpc. A more realistic abundance matching model and better statistics from upcoming observations are needed to clarify the situation. We also estimate that about 12 per cent of the ‘galaxies’ in the abundance-matched sample are satellites inhabiting central haloes with mass M ≳ 1014 h−1 M⊙. Using the MultiDark simulation, we also study the real-space halo bias b of the matched catalogue finding that b = 2.00 ± 0.07 at large scales, consistent with the one obtained using the measured BOSS-projected correlation function. Furthermore, the linear large-scale bias, defined using the extrapolated linear matter power spectrum, depends on the number density n of the abundance-matched sample as b = −0.048 − (0.594 ± 0.02)log10(n/ h3 Mpc−3). Extrapolating these results to baryon acoustic oscillation scales, we measure a scale-dependent damping of the acoustic signal produced by non-linear evolution that leads to ∼2–4 per cent dips at ≳ 3σ level for wavenumbers k ≳ 0.1 h Mpc−1 in the linear large-scale bias.

[1]  J. Brinkmann,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey:a large sample of mock galaxy catalogues , 2012, 1203.6609.

[2]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[3]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[4]  D. Wake,et al.  The clustering of galaxies in the SDSS‐III Baryon Oscillation Spectroscopic Survey: cosmological implications of the large‐scale two‐point correlation function , 2012, 1203.6616.

[5]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: analysis of potential systematics , 2012, 1203.6499.

[6]  R. Nichol,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: measurements of the growth of structure and expansion rate at z = 0.57 from anisotropic clustering , 2012, 1203.6641.

[7]  Daniel Thomas,et al.  The clustering of galaxies in the sdss-iii baryon oscillation spectroscopic survey: Baryon acoustic oscillations in the data release 9 spectroscopic galaxy sample , 2012, 1312.4877.

[8]  A. Berlind,et al.  CONSTRAINING SATELLITE GALAXY STELLAR MASS LOSS AND PREDICTING INTRAHALO LIGHT. I. FRAMEWORK AND RESULTS AT LOW REDSHIFT , 2012, 1201.2407.

[9]  Ashley J. Ross,et al.  CLUSTERING OF SLOAN DIGITAL SKY SURVEY III PHOTOMETRIC LUMINOUS GALAXIES: THE MEASUREMENT, SYSTEMATICS, AND COSMOLOGICAL IMPLICATIONS , 2012, 1201.2137.

[10]  Risa H. Wechsler,et al.  GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY , 2011, 1110.4370.

[11]  Hong Guo,et al.  A NEW METHOD TO CORRECT FOR FIBER COLLISIONS IN GALAXY TWO-POINT STATISTICS , 2011, 1111.6598.

[12]  Tim D. Higgs,et al.  The morphology of galaxies in the Baryon Oscillation Spectroscopic Survey , 2011, 1106.3331.

[13]  Adam D. Myers,et al.  Ameliorating systematic uncertainties in the angular clustering of galaxies: a study using the SDSS-III , 2011, 1105.2320.

[14]  Adam D. Myers,et al.  The Lyman-α forest in three dimensions: measurements of large scale flux correlations from BOSS 1st-year data , 2011, 1104.5244.

[15]  Joel R. Primack,et al.  Halo concentrations in the standard LCDM cosmology , 2011, 1104.5130.

[16]  Michal Maciejewski,et al.  Haloes gone MAD: The Halo-Finder Comparison Project , 2011, 1104.0949.

[17]  A. Leauthaud,et al.  A THEORETICAL FRAMEWORK FOR COMBINING TECHNIQUES THAT PROBE THE LINK BETWEEN GALAXIES AND DARK MATTER , 2011, 1103.2077.

[18]  R. Nichol,et al.  THE CLUSTERING OF MASSIVE GALAXIES AT z ∼ 0.5 FROM THE FIRST SEMESTER OF BOSS DATA , 2010, 1010.4915.

[19]  R. Nichol,et al.  GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY , 2010, 1005.2413.

[20]  Joel Primack,et al.  GALAXIES IN ΛCDM WITH HALO ABUNDANCE MATCHING: LUMINOSITY–VELOCITY RELATION, BARYONIC MASS–VELOCITY RELATION, VELOCITY FUNCTION, AND CLUSTERING , 2010, 1005.1289.

[21]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: SKY MAPS, SYSTEMATIC ERRORS, AND BASIC RESULTS , 2010, 1001.4744.

[22]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[23]  Ž. Ivezić,et al.  THE BLUE TIP OF THE STELLAR LOCUS: MEASURING REDDENING WITH THE SLOAN DIGITAL SKY SURVEY , 2010, 1009.4933.

[24]  S. Phleps,et al.  A new model for the full shape of the large-scale power spectrum , 2010, 1007.0755.

[25]  A. Klypin,et al.  DARK MATTER HALOS IN THE STANDARD COSMOLOGICAL MODEL: RESULTS FROM THE BOLSHOI SIMULATION , 2010, 1002.3660.

[26]  R. Brunner,et al.  Evolution of the clustering of photometrically selected SDSS galaxies , 2010, 1002.1476.

[27]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[28]  D. Eisenstein,et al.  HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME , 2009, 0910.5005.

[29]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[30]  Martin White,et al.  What determines satellite galaxy disruption , 2009, 0907.0702.

[31]  R. Brunner,et al.  Halo-model analysis of the clustering of photometrically selected galaxies from SDSS , 2009, 0906.4977.

[32]  Takahiro Nishimichi,et al.  Nonlinear evolution of baryon acoustic oscillations from improved perturbation theory in real and redshift spaces , 2009, 0906.0507.

[33]  S. White,et al.  The distribution of stellar mass in the low‐redshift Universe , 2009, 0901.0706.

[34]  Case Western Reserve University,et al.  HALO OCCUPATION DISTRIBUTION MODELING OF CLUSTERING OF LUMINOUS RED GALAXIES , 2008, 0809.1868.

[35]  P. Norberg,et al.  The real-space clustering of luminous red galaxies around z<0.6 quasars in the Sloan Digital Sky Survey , 2008, 0802.2105.

[36]  D. Wake,et al.  The clustering of radio galaxies at z≃ 0.55 from the 2SLAQ LRG survey , 2008, 0810.1050.

[37]  T. Matsubara Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture , 2008, 0807.1733.

[38]  R. Skibba,et al.  A halo model of galaxy colours and clustering in the Sloan Digital Sky Survey , 2008, 0805.0310.

[39]  M. White,et al.  Red Galaxy Growth and the Halo Occupation Distribution , 2008, 0804.2293.

[40]  Durham,et al.  What is the best way to measure baryonic acoustic oscillations , 2008, 0804.0233.

[41]  V. Springel,et al.  An Ideal Mass Assignment Scheme for Measuring the Power Spectrum with Fast Fourier Transforms , 2008, 0804.0070.

[42]  Changbom Park,et al.  A Subhalo-Galaxy Correspondence Model of Galaxy Biasing , 2008, 0801.3169.

[43]  M. Swanson,et al.  Methods for rapidly processing angular masks of next-generation galaxy surveys , 2007, 0711.4352.

[44]  T. Matsubara,et al.  Resumming Cosmological Perturbations via the Lagrangian Picture: One-loop Results in Real Space and in Redshift Space , 2007, 0711.2521.

[45]  O. Lahav,et al.  Halo-model signatures from 380 000 Sloan Digital Sky Survey luminous red galaxies with photometric redshifts , 2007, 0704.3377.

[46]  M. Crocce,et al.  Nonlinear evolution of baryon acoustic oscillations , 2007, 0704.2783.

[47]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[48]  Robert C. Nichol,et al.  The three-point correlation function of luminous red galaxies in the Sloan Digital Sky Survey , 2007, astro-ph/0703340.

[49]  Durham,et al.  The detectability of baryonic acoustic oscillations in future galaxy surveys. , 2007, astro-ph/0702543.

[50]  R. Nichol,et al.  The 2dF-SDSS LRG and QSO Survey: the LRG 2-point correlation function and redshift-space distortions , 2006, astro-ph/0612400.

[51]  D. Eisenstein,et al.  On the Robustness of the Acoustic Scale in the Low-Redshift Clustering of Matter , 2006, astro-ph/0604361.

[52]  D. Eisenstein,et al.  Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak , 2006, astro-ph/0604362.

[53]  Walter A. Siegmund,et al.  The 2.5 m Telescope of the Sloan Digital Sky Survey , 2006, astro-ph/0602326.

[54]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[55]  Michael S. Warren,et al.  Very Small Scale Clustering and Merger Rate of Luminous Red Galaxies , 2005, astro-ph/0512166.

[56]  M. Crocce,et al.  Renormalized cosmological perturbation theory , 2005, astro-ph/0509418.

[57]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[58]  J. Peacock,et al.  Galaxy clustering from COMBO-17: the halo occupation distribution at = 0.6 , 2005, astro-ph/0506320.

[59]  C. Baugh,et al.  Constraints on the dark energy equation of state from the imprint of baryons on the power spectrum of clusters , 2005, astro-ph/0504456.

[60]  R. Wechsler,et al.  The Physics of Galaxy Clustering. I. A Model for Subhalo Populations , 2004, astro-ph/0411586.

[61]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[62]  R. Davé,et al.  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[63]  Y. Jing,et al.  Correcting for the Alias Effect When Measuring the Power Spectrum Using a Fast Fourier Transform , 2004, astro-ph/0409240.

[64]  J. Frieman,et al.  Cosmology and the Halo Occupation Distribution from Small-Scale Galaxy Clustering in the Sloan Digital Sky Survey , 2004, astro-ph/0408003.

[65]  R. Nichol,et al.  The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey , 2003, astro-ph/0310725.

[66]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[67]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[68]  Max Tegmark,et al.  A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys , 2003, astro-ph/0306324.

[69]  A. Klypin,et al.  Density Profiles of ΛCDM Clusters , 2003, astro-ph/0311062.

[70]  R. Nichol,et al.  The 3D power spectrum of galaxies from the SDSS , 2003, astro-ph/0310725.

[71]  F. M. Maley,et al.  An Efficient Targeting Strategy for Multiobject Spectrograph Surveys: the Sloan Digital Sky Survey “Tiling” Algorithm , 2001, astro-ph/0105535.

[72]  Alexander S. Szalay,et al.  Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data , 2002 .

[73]  Rachel S. Somerville,et al.  ΛCDM-based Models for the Milky Way and M31. I. Dynamical Models , 2001, astro-ph/0110390.

[74]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[75]  R. Sheth,et al.  PTHALOS: a fast method for generating mock galaxy distributions , 2001, astro-ph/0106120.

[76]  S.Cole,et al.  The 2dF Galaxy Redshift Survey: spectra and redshifts , 2001, astro-ph/0106498.

[77]  et al,et al.  Galaxy Clustering in Early SDSS Redshift Data , 2001, astro-ph/0106476.

[78]  F. Miller Maley,et al.  An Efficient Algorithm for Positioning Tiles in the Sloan Digital Sky Survey , 2001 .

[79]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[80]  J. Peacock,et al.  Baryonic signatures in Large-Scale Structure , 1998, astro-ph/9812214.

[81]  et al,et al.  The Sloan Digital Sky Survey Photometric Camera , 1998, astro-ph/9809085.

[82]  A. Klypin,et al.  Adaptive Refinement Tree: A New High-Resolution N-Body Code for Cosmological Simulations , 1997, astro-ph/9701195.

[83]  M. Fukugita,et al.  The Sloan Digital Sky Survey Photometric System , 1996 .

[84]  A. Hamilton Toward Better Ways to Measure the Galaxy Correlation Function , 1993 .

[85]  A. Szalay,et al.  Bias and variance of angular correlation functions , 1993 .

[86]  N. Kaiser Clustering in real space and in redshift space , 1987 .

[87]  Marc Davis,et al.  A survey of galaxy redshifts. V. The two-point position and velocity correlations. , 1983 .