A topological proof of Sklar's theorem
暂无分享,去创建一个
Juan Fernández-Sánchez | Fabrizio Durante | Carlo Sempi | C. Sempi | F. Durante | J. Fernández-Sánchez
[1] Bill Ravens,et al. An Introduction to Copulas , 2000, Technometrics.
[2] Fabrizio Durante,et al. Copulae in Mathematical and Quantitative Finance , 2013 .
[3] M. D. Taylor,et al. A New Proof of Sklar’s Theorem , 2002 .
[4] David S. Moore,et al. Unified Large-Sample Theory of General Chi-Squared Statistics for Tests of Fit , 1975 .
[5] L. Rüschendorf. On the distributional transform, Sklar's theorem, and the empirical copula process , 2009 .
[6] Berthold Schweizer,et al. Probabilistic Metric Spaces , 2011 .
[7] R. Nelsen. An Introduction to Copulas (Springer Series in Statistics) , 2006 .
[8] Umberto Cherubini,et al. Dynamic Copula Methods in Finance , 2011 .
[9] Carlo De Michele,et al. Extremes in Nature : an approach using Copulas , 2007 .
[10] Carles M. Cuadras,et al. Distributions With Given Marginals and Statistical Modelling , 2002 .
[11] Rearrangement inequalities for functionals with monotone integrands , 2005, math/0506336.
[12] B. Schweizer,et al. Operations on distribution functions not derivable from operations on random variables , 1974 .
[13] Paul Deheuvels,et al. A multivariate Bahadur–Kiefer representation for the empirical copula process , 2009 .
[14] Convergence of copulas: Critical remarks , 2004 .
[15] Juan Fernández-Sánchez,et al. Sklar’s theorem obtained via regularization techniques , 2012 .
[16] C. Sempi,et al. Copula Theory: An Introduction , 2010 .
[17] Juan Fernández-Sánchez,et al. Characterization of all copulas associated with non-continuous random variables , 2012, Fuzzy Sets Syst..
[18] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .