A topological proof of Sklar's theorem

Abstract We present a proof of Sklar’s Theorem that uses topological arguments, namely compactness (under the weak topology) of the class of copulas and some density properties of the class of distribution functions.

[1]  Bill Ravens,et al.  An Introduction to Copulas , 2000, Technometrics.

[2]  Fabrizio Durante,et al.  Copulae in Mathematical and Quantitative Finance , 2013 .

[3]  M. D. Taylor,et al.  A New Proof of Sklar’s Theorem , 2002 .

[4]  David S. Moore,et al.  Unified Large-Sample Theory of General Chi-Squared Statistics for Tests of Fit , 1975 .

[5]  L. Rüschendorf On the distributional transform, Sklar's theorem, and the empirical copula process , 2009 .

[6]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[7]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[8]  Umberto Cherubini,et al.  Dynamic Copula Methods in Finance , 2011 .

[9]  Carlo De Michele,et al.  Extremes in Nature : an approach using Copulas , 2007 .

[10]  Carles M. Cuadras,et al.  Distributions With Given Marginals and Statistical Modelling , 2002 .

[11]  Rearrangement inequalities for functionals with monotone integrands , 2005, math/0506336.

[12]  B. Schweizer,et al.  Operations on distribution functions not derivable from operations on random variables , 1974 .

[13]  Paul Deheuvels,et al.  A multivariate Bahadur–Kiefer representation for the empirical copula process , 2009 .

[14]  Convergence of copulas: Critical remarks , 2004 .

[15]  Juan Fernández-Sánchez,et al.  Sklar’s theorem obtained via regularization techniques , 2012 .

[16]  C. Sempi,et al.  Copula Theory: An Introduction , 2010 .

[17]  Juan Fernández-Sánchez,et al.  Characterization of all copulas associated with non-continuous random variables , 2012, Fuzzy Sets Syst..

[18]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .