A fast direct solver for elliptic problems on Cartesian meshes in 3D

We present a fast direct algorithm for solutions to linear systems arising from three dimensional elliptic equations. We follow the approach of Xia et al. (2009) on combining the multifrontal method with hierarchical matrices in two dimensions and extend it to three dimensional case. Linear time complexity is shown and a more practical variant with worse scaling is demonstrated.

[1]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[2]  E. Weinan,et al.  Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems , 2009 .

[3]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[4]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[5]  E Weinan,et al.  A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations , 2010, SIAM J. Sci. Comput..

[6]  Per-Gunnar Martinsson,et al.  Fast direct solvers for integral equations in complex three-dimensional domains , 2009, Acta Numerica.

[7]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[8]  Patrick Amestoy,et al.  Task Scheduling in an Asynchronous Distributed Memory Multifrontal Solver , 2005, SIAM J. Matrix Anal. Appl..

[9]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[10]  W. Hackbusch,et al.  An introduction to hierarchical matrices , 2001 .

[11]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[12]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[13]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[14]  Wolfgang Hackbusch,et al.  Adaptive Geometrically Balanced Clustering of H-Matrices , 2004, Computing.

[15]  V. Rokhlin,et al.  A fast direct solver for boundary integral equations in two dimensions , 2003 .

[16]  Ronald Kriemann,et al.  Hierarchical Matrices Based on a Weak Admissibility Criterion , 2004, Computing.

[17]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[18]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[19]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[20]  Bruce Hendrickson,et al.  Improving the Run Time and Quality of Nested Dissection Ordering , 1998, SIAM J. Sci. Comput..

[21]  Maciej Paszyński,et al.  Computing with hp-ADAPTIVE FINITE ELEMENTS: Volume II Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications , 2007 .

[22]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[23]  Lexing Ying,et al.  A fast direct solver for elliptic problems on general meshes in 2D , 2012, J. Comput. Phys..