Sydnone Methides: Intermediates between Mesoionic Compounds and Mesoionic N‐Heterocyclic Olefins
暂无分享,去创建一个
[1] Ryosuke Haraguchi,et al. Fluoride-Mediated Nucleophilic Aromatic Amination of Chloro-1H-1,2,3-triazolium Salts. , 2021, Organic letters.
[2] M. Nieger,et al. Sydnonmethide – fast vergessene Mesoionen als Vorläufermoleküle von anionischen N‐heterocyclischen Carbenen , 2021, Angewandte Chemie.
[3] P. Antoni,et al. N2/CO Exchange at a Vinylidene Carbon Center: Stable Alkylidene Ketenes and Alkylidene Thioketenes from 1,2,3-Triazole Derived Diazoalkenes. , 2021, Journal of the American Chemical Society.
[4] M. Nieger,et al. Sydnone Methides—A Forgotten Class of Mesoionic Compounds for the Generation of Anionic N‐Heterocyclic Carbenes , 2021, Angewandte Chemie.
[5] D. Pantazis,et al. Isolation and reactivity of an elusive diazoalkene , 2021, Nature Chemistry.
[6] Hongyan Zhao,et al. Synthesis of Mesoionic N-Heterocyclic Olefins and Catalytic Application for Hydroboration Reactions. , 2020, The Journal of organic chemistry.
[7] Tyll Freese,et al. Sonogashira-Hagihara and Buchwald-Hartwig cross-coupling reactions with sydnone and sydnone imine derived catalysts , 2020, Arkivoc.
[8] D. Song,et al. Piano-Stool Iron Complexes as Precatalysts for gem-Specific Dimerization of Terminal Alkynes , 2020 .
[9] K. K. Lo,et al. Bioorthogonal Phosphorogenic Rhenium(I) Polypyridine Sydnone Complexes for Specific Lysosome Labeling. , 2020, ChemPlusChem.
[10] P. Antoni,et al. Stable Mesoionic N‐Heterocyclic Olefins (mNHOs) , 2019, Angewandte Chemie.
[11] S. Joshi,et al. Synthesis, Docking, and Pharmacological Evaluation of Derivatives of α‐Aminoketones Appended to Sydnones as Potent Antitubercular and Antifungal Scaffolds , 2019, Journal of Heterocyclic Chemistry.
[12] M. Nieger,et al. Cycloadditions of anionic N-heterocyclic carbenes of sydnone imines , 2019, Tetrahedron Letters.
[13] S. J. Shaikh,et al. Serendipitous Formation of 2H-Pyrazolo[3,4-d]pyridazin-7(6H)-ones from 3-Arylsydnones , 2019, ACS omega.
[14] K. Moremen,et al. Selective Engineering of Linkage-Specific α2,6-N-Linked Sialoproteins Using Sydnone-Modified Sialic Acid Bioorthogonal Reporters. , 2019, Angewandte Chemie.
[15] J. Kästner,et al. Proton Affinities of N-Heterocyclic Olefins and Their Implications for Organocatalyst Design. , 2019, The Journal of organic chemistry.
[16] Nicoleta Olguța Corneli. SCREENING OF HETEROCYCLIC SUBSTITUTED SYDNONES FOR POTENTIAL BIOLOGICAL ACTIVITY , 2018, FARMACIA.
[17] F. Friscourt,et al. Fluorogenic Sydnone-Modified Coumarins Switched-On by Copper-Free Click Chemistry. , 2018, Organic letters.
[18] J. Váňa,et al. [3 + 2]-Cycloaddition reaction of sydnones with alkynes , 2018, Beilstein journal of organic chemistry.
[19] M. Nieger,et al. Heterocycle Syntheses with Anionic N‐Heterocyclic Carbenes: Ring Transformations of Sydnone Imine Anions , 2018 .
[20] J. Badaut,et al. Sydnone Reporters for Highly Fluorogenic Copper-Free Click Ligations. , 2018, The Journal of organic chemistry.
[21] A. Wagner,et al. Bioorthogonal Click and Release Reaction of Iminosydnones with Cycloalkynes. , 2017, Angewandte Chemie.
[22] M. Nieger,et al. Anionic N-heterocyclic carbenes derived from sydnone imines such as molsidomine. Trapping reactions with selenium, palladium, and gold , 2017 .
[23] E. Rivard,et al. Pushing Chemical Boundaries with N-Heterocyclic Olefins (NHOs): From Catalysis to Main Group Element Chemistry. , 2017, Accounts of chemical research.
[24] Tyll Freese,et al. Suzuki–Miyaura Cross-Coupling Reactions in Acetic Acid Employing Sydnone-Derived Catalyst Systems , 2017, Synlett.
[25] A. Wagner,et al. Ultrafast Click Chemistry with Fluorosydnones. , 2016, Angewandte Chemie.
[26] Zong‐Jie Guan,et al. Palladium complexes of anionic N-heterocyclic carbenes derived from sydnones in catalysis , 2016 .
[27] T. V. Nguyen,et al. The Resurgence of the Highly Ylidic N-Heterocyclic Olefins as a New Class of Organocatalysts. , 2016, Chemistry.
[28] W. Frank,et al. Determining the Ligand Properties of N‐Heterocyclic Carbenes from 77Se NMR Parameters , 2015 .
[29] C. Créminon,et al. Discovery of chemoselective and biocompatible reactions using a high-throughput immunoassay screening. , 2013, Angewandte Chemie.
[30] K. Schaper,et al. Determining the π-Acceptor Properties of N-Heterocyclic Carbenes by Measuring the 77Se NMR Chemical Shifts of Their Selenium Adducts , 2013 .
[31] Tyll Freese,et al. Recent advances in neutral and anionic N-heterocyclic carbene - betaine interconversions. Synthesis, characterization, and applications , 2013 .
[32] C. A. Ramsden,et al. Heterocyclic mesomeric betaines: the recognition of five classes and nine sub-classes based on connectivity-matrix analysis , 2013 .
[33] Zong‐Jie Guan,et al. Pericyclic rearrangements of N-heterocyclic carbenes of indazole to substituted 9-aminoacridines. , 2013, Organic & biomolecular chemistry.
[34] G. Bertrand,et al. 31P NMR chemical shifts of carbene-phosphinidene adducts as an indicator of the π-accepting properties of carbenes. , 2013, Angewandte Chemie.
[35] C. Daniliuc,et al. Reactivity of a frustrated lewis pair and small-molecule activation by an isolable Arduengo carbene-B{3,5-(CF3)2C6H3}3 complex. , 2012, Chemistry.
[36] J. Sotiropoulos,et al. Imidazol(in)ium hydrogen carbonates as a genuine source of N-heterocyclic carbenes (NHCs): applications to the facile preparation of NHC metal complexes and to NHC-organocatalyzed molecular and macromolecular syntheses. , 2012, Journal of the American Chemical Society.
[37] M. Nieger,et al. Synthesis of a Pyrazol-3-ylidene Palladium Complex, Pyrazolium Salts and Mesomeric Betaines of Pyrazole as N-Heterocyclic Carbene Precursors , 2012 .
[38] M. Beller,et al. Wiederverwendbare Katalysatoren für palladiumkatalysierte C‐O‐Kupplungen, Buchwald‐Hartwig‐Aminierungen und Sonogashira‐Reaktionen , 2010 .
[39] H. Neumann,et al. Recyclable catalysts for palladium-catalyzed C-O coupling reactions, Buchwald-Hartwig aminations, and Sonogashira reactions. , 2010, Angewandte Chemie.
[40] A. Schmidt,et al. Funktionalisierte 4‐Aminochinoline durch Umlagerung von N‐heterocyclischen Carbenen des Pyrazols , 2010 .
[41] A. Schmidt,et al. Functionalized 4-aminoquinolines by rearrangement of pyrazole N-heterocyclic carbenes. , 2010, Angewandte Chemie.
[42] D. Browne,et al. Recent developments in the chemistry of sydnones , 2010 .
[43] X. Sauvage,et al. Imidazol(in)ium‐2‐carboxylates as N‐Heterocyclic Carbene Precursors for the Synthesis of Second Generation Ruthenium Metathesis Catalysts , 2009 .
[44] D. Browne,et al. A sydnone cycloaddition route to pyrazole boronic esters. , 2007, Angewandte Chemie.
[45] W. Eisfeld,et al. Nucleophilic carbenes and pseudo-cross-conjugated mesomeric betaines of indazole starting from analogues of the alkaloid-betaine nigellicine , 2005 .
[46] A. Habeck. Nucleophilic Carbenes of Pyrazoles Starting from Pseudo-Cross-Conjugated Mesomeric Betaines , 2005 .
[47] A. Padwa,et al. Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products , 2002 .
[48] M. Kindermann,et al. Charged and Betainic Nucleobases. On Syntheses and Properties of First Mesomeric Uracilylbetaines, Uracilates, and Novel Uracilium Salts , 1997 .
[49] H. Schwarz,et al. Observation of the Hammick Intermediate: Reduction of the Pyridine-2-ylid Ion in the Gas Phase† , 1996 .
[50] R. Boese,et al. Derivate des Imidazols, XI. (C8H14N2)M(CO)5 (M = Mo, W) ‐ Terminale Koordination eines Olefins in Pentacarbonylmetall‐Komplexen , 1994 .
[51] Mark S. Gordon,et al. General atomic and molecular electronic structure system , 1993, J. Comput. Chem..
[52] W. Bauer,et al. Monomeric organolithium compounds in tetrahydrofuran: tert-butyllithium, sec-butyllithium, supermesityllithium, mesityllithium, and phenyllithium. Carbon-lithium coupling constants and the nature of carbon-lithium bonding , 1987 .
[53] L. Pauling,et al. Carbon—Carbon Bond Distances. The Electron Diffraction Investigation of Ethane, Propane, Isobutane, Neopentane, Cyclopropane, Cyclopentane, Cyclohexane, Allene, Ethylene, Isobutene, Tetramethylethylene, Mesitylene, and Hexamethylbenzene. Revised Values of Covalent Radii , 1937 .
[54] Kenneth B. Wiberg,et al. Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .