Sydnone Methides: Intermediates between Mesoionic Compounds and Mesoionic N‐Heterocyclic Olefins

[1]  Ryosuke Haraguchi,et al.  Fluoride-Mediated Nucleophilic Aromatic Amination of Chloro-1H-1,2,3-triazolium Salts. , 2021, Organic letters.

[2]  M. Nieger,et al.  Sydnonmethide – fast vergessene Mesoionen als Vorläufermoleküle von anionischen N‐heterocyclischen Carbenen , 2021, Angewandte Chemie.

[3]  P. Antoni,et al.  N2/CO Exchange at a Vinylidene Carbon Center: Stable Alkylidene Ketenes and Alkylidene Thioketenes from 1,2,3-Triazole Derived Diazoalkenes. , 2021, Journal of the American Chemical Society.

[4]  M. Nieger,et al.  Sydnone Methides—A Forgotten Class of Mesoionic Compounds for the Generation of Anionic N‐Heterocyclic Carbenes , 2021, Angewandte Chemie.

[5]  D. Pantazis,et al.  Isolation and reactivity of an elusive diazoalkene , 2021, Nature Chemistry.

[6]  Hongyan Zhao,et al.  Synthesis of Mesoionic N-Heterocyclic Olefins and Catalytic Application for Hydroboration Reactions. , 2020, The Journal of organic chemistry.

[7]  Tyll Freese,et al.  Sonogashira-Hagihara and Buchwald-Hartwig cross-coupling reactions with sydnone and sydnone imine derived catalysts , 2020, Arkivoc.

[8]  D. Song,et al.  Piano-Stool Iron Complexes as Precatalysts for gem-Specific Dimerization of Terminal Alkynes , 2020 .

[9]  K. K. Lo,et al.  Bioorthogonal Phosphorogenic Rhenium(I) Polypyridine Sydnone Complexes for Specific Lysosome Labeling. , 2020, ChemPlusChem.

[10]  P. Antoni,et al.  Stable Mesoionic N‐Heterocyclic Olefins (mNHOs) , 2019, Angewandte Chemie.

[11]  S. Joshi,et al.  Synthesis, Docking, and Pharmacological Evaluation of Derivatives of α‐Aminoketones Appended to Sydnones as Potent Antitubercular and Antifungal Scaffolds , 2019, Journal of Heterocyclic Chemistry.

[12]  M. Nieger,et al.  Cycloadditions of anionic N-heterocyclic carbenes of sydnone imines , 2019, Tetrahedron Letters.

[13]  S. J. Shaikh,et al.  Serendipitous Formation of 2H-Pyrazolo[3,4-d]pyridazin-7(6H)-ones from 3-Arylsydnones , 2019, ACS omega.

[14]  K. Moremen,et al.  Selective Engineering of Linkage-Specific α2,6-N-Linked Sialoproteins Using Sydnone-Modified Sialic Acid Bioorthogonal Reporters. , 2019, Angewandte Chemie.

[15]  J. Kästner,et al.  Proton Affinities of N-Heterocyclic Olefins and Their Implications for Organocatalyst Design. , 2019, The Journal of organic chemistry.

[16]  Nicoleta Olguța Corneli SCREENING OF HETEROCYCLIC SUBSTITUTED SYDNONES FOR POTENTIAL BIOLOGICAL ACTIVITY , 2018, FARMACIA.

[17]  F. Friscourt,et al.  Fluorogenic Sydnone-Modified Coumarins Switched-On by Copper-Free Click Chemistry. , 2018, Organic letters.

[18]  J. Váňa,et al.  [3 + 2]-Cycloaddition reaction of sydnones with alkynes , 2018, Beilstein journal of organic chemistry.

[19]  M. Nieger,et al.  Heterocycle Syntheses with Anionic N‐Heterocyclic Carbenes: Ring Transformations of Sydnone Imine Anions , 2018 .

[20]  J. Badaut,et al.  Sydnone Reporters for Highly Fluorogenic Copper-Free Click Ligations. , 2018, The Journal of organic chemistry.

[21]  A. Wagner,et al.  Bioorthogonal Click and Release Reaction of Iminosydnones with Cycloalkynes. , 2017, Angewandte Chemie.

[22]  M. Nieger,et al.  Anionic N-heterocyclic carbenes derived from sydnone imines such as molsidomine. Trapping reactions with selenium, palladium, and gold , 2017 .

[23]  E. Rivard,et al.  Pushing Chemical Boundaries with N-Heterocyclic Olefins (NHOs): From Catalysis to Main Group Element Chemistry. , 2017, Accounts of chemical research.

[24]  Tyll Freese,et al.  Suzuki–Miyaura Cross-Coupling Reactions in Acetic Acid Employing Sydnone-Derived Catalyst Systems , 2017, Synlett.

[25]  A. Wagner,et al.  Ultrafast Click Chemistry with Fluorosydnones. , 2016, Angewandte Chemie.

[26]  Zong‐Jie Guan,et al.  Palladium complexes of anionic N-heterocyclic carbenes derived from sydnones in catalysis , 2016 .

[27]  T. V. Nguyen,et al.  The Resurgence of the Highly Ylidic N-Heterocyclic Olefins as a New Class of Organocatalysts. , 2016, Chemistry.

[28]  W. Frank,et al.  Determining the Ligand Properties of N‐Heterocyclic Carbenes from 77Se NMR Parameters , 2015 .

[29]  C. Créminon,et al.  Discovery of chemoselective and biocompatible reactions using a high-throughput immunoassay screening. , 2013, Angewandte Chemie.

[30]  K. Schaper,et al.  Determining the π-Acceptor Properties of N-Heterocyclic Carbenes by Measuring the 77Se NMR Chemical Shifts of Their Selenium Adducts , 2013 .

[31]  Tyll Freese,et al.  Recent advances in neutral and anionic N-heterocyclic carbene - betaine interconversions. Synthesis, characterization, and applications , 2013 .

[32]  C. A. Ramsden,et al.  Heterocyclic mesomeric betaines: the recognition of five classes and nine sub-classes based on connectivity-matrix analysis , 2013 .

[33]  Zong‐Jie Guan,et al.  Pericyclic rearrangements of N-heterocyclic carbenes of indazole to substituted 9-aminoacridines. , 2013, Organic & biomolecular chemistry.

[34]  G. Bertrand,et al.  31P NMR chemical shifts of carbene-phosphinidene adducts as an indicator of the π-accepting properties of carbenes. , 2013, Angewandte Chemie.

[35]  C. Daniliuc,et al.  Reactivity of a frustrated lewis pair and small-molecule activation by an isolable Arduengo carbene-B{3,5-(CF3)2C6H3}3 complex. , 2012, Chemistry.

[36]  J. Sotiropoulos,et al.  Imidazol(in)ium hydrogen carbonates as a genuine source of N-heterocyclic carbenes (NHCs): applications to the facile preparation of NHC metal complexes and to NHC-organocatalyzed molecular and macromolecular syntheses. , 2012, Journal of the American Chemical Society.

[37]  M. Nieger,et al.  Synthesis of a Pyrazol-3-ylidene Palladium Complex, Pyrazolium Salts and Mesomeric Betaines of Pyrazole as N-Heterocyclic Carbene Precursors , 2012 .

[38]  M. Beller,et al.  Wiederverwendbare Katalysatoren für palladiumkatalysierte C‐O‐Kupplungen, Buchwald‐Hartwig‐Aminierungen und Sonogashira‐Reaktionen , 2010 .

[39]  H. Neumann,et al.  Recyclable catalysts for palladium-catalyzed C-O coupling reactions, Buchwald-Hartwig aminations, and Sonogashira reactions. , 2010, Angewandte Chemie.

[40]  A. Schmidt,et al.  Funktionalisierte 4‐Aminochinoline durch Umlagerung von N‐heterocyclischen Carbenen des Pyrazols , 2010 .

[41]  A. Schmidt,et al.  Functionalized 4-aminoquinolines by rearrangement of pyrazole N-heterocyclic carbenes. , 2010, Angewandte Chemie.

[42]  D. Browne,et al.  Recent developments in the chemistry of sydnones , 2010 .

[43]  X. Sauvage,et al.  Imidazol(in)ium‐2‐carboxylates as N‐Heterocyclic Carbene Precursors for the Synthesis of Second Generation Ruthenium Metathesis Catalysts , 2009 .

[44]  D. Browne,et al.  A sydnone cycloaddition route to pyrazole boronic esters. , 2007, Angewandte Chemie.

[45]  W. Eisfeld,et al.  Nucleophilic carbenes and pseudo-cross-conjugated mesomeric betaines of indazole starting from analogues of the alkaloid-betaine nigellicine , 2005 .

[46]  A. Habeck Nucleophilic Carbenes of Pyrazoles Starting from Pseudo-Cross-Conjugated Mesomeric Betaines , 2005 .

[47]  A. Padwa,et al.  Synthetic applications of 1,3-dipolar cycloaddition chemistry toward heterocycles and natural products , 2002 .

[48]  M. Kindermann,et al.  Charged and Betainic Nucleobases. On Syntheses and Properties of First Mesomeric Uracilylbetaines, Uracilates, and Novel Uracilium Salts , 1997 .

[49]  H. Schwarz,et al.  Observation of the Hammick Intermediate: Reduction of the Pyridine-2-ylid Ion in the Gas Phase† , 1996 .

[50]  R. Boese,et al.  Derivate des Imidazols, XI. (C8H14N2)M(CO)5 (M = Mo, W) ‐ Terminale Koordination eines Olefins in Pentacarbonylmetall‐Komplexen , 1994 .

[51]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[52]  W. Bauer,et al.  Monomeric organolithium compounds in tetrahydrofuran: tert-butyllithium, sec-butyllithium, supermesityllithium, mesityllithium, and phenyllithium. Carbon-lithium coupling constants and the nature of carbon-lithium bonding , 1987 .

[53]  L. Pauling,et al.  Carbon—Carbon Bond Distances. The Electron Diffraction Investigation of Ethane, Propane, Isobutane, Neopentane, Cyclopropane, Cyclopentane, Cyclohexane, Allene, Ethylene, Isobutene, Tetramethylethylene, Mesitylene, and Hexamethylbenzene. Revised Values of Covalent Radii , 1937 .

[54]  Kenneth B. Wiberg,et al.  Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane , 1968 .