Natural Termination

Two techniques are examined for showing termination of rewrite systems when simpli cation ordering are insu cient. The rst approach generalizes the various path orderings and the conditions under which they work. Examples of its use are given and a brief description of an implementation is presented. The second approach uses restricted derivations, called \forward closures", for proving termination of orthogonal and overlaying systems. Both approaches allow the use of \natural" interpretations under which rules rewrite terms to terms of the same value.

[1]  Nachum Dershowitz Termination of Linear Rewriting Systems (Preliminary Version) , 1981, ICALP.

[2]  Bernhard Gramlich,et al.  Relating Innermost, Weak, Uniform and Modular Termination of Term Rewriting Systems , 1992, LPAR.

[3]  Michael J. O'Donnell,et al.  Computing in systems described by equations , 1977, Lecture Notes in Computer Science.

[4]  Nachum Dershowitz Orderings for Term-Rewriting Systems , 1979, FOCS.

[5]  Ursula Martin,et al.  A Geometrical Approach to Multiset Orderings , 1989, Theor. Comput. Sci..

[6]  Richard J. Lipton,et al.  On the Halting of Tree Replacement Systems. , 1977 .

[7]  Hans Zantema,et al.  Termination of Term Rewriting by Semantic Labelling , 1995, Fundam. Informaticae.

[8]  Nachum Dershowitz,et al.  Equational inference, canonical proofs, and proof orderings , 1994, JACM.

[9]  D. Plaisted Equational reasoning and term rewriting systems , 1993 .

[10]  Nachum Dershowitz,et al.  Termination of Rewriting , 1987, J. Symb. Comput..

[11]  Nachum Dershowitz,et al.  Topics in Termination , 1993, RTA.

[12]  Nachum Dershowitz,et al.  Orderings for term-rewriting systems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[13]  Dov M. Gabbay,et al.  Handbook of logic in artificial intelligence and logic programming (vol. 1) , 1993 .

[14]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[15]  David A. Plaisted,et al.  Polynomial Time Termination and Constraint Satisfaction Tests , 1993, RTA.

[16]  Alfons GESER,et al.  A Solution to Zantema's Problem , 1993 .

[17]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[18]  Zohar Manna,et al.  Proving termination with multiset orderings , 1979, CACM.

[19]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.

[20]  Elias Tahhan Bittar,et al.  Systèmes de réécritures orthogonaux non effacants et linéaires droite : application au problème de Zantema , 1994 .

[21]  Rod M. Burstall,et al.  Proving Properties of Programs by Structural Induction , 1969, Comput. J..

[22]  Jean-Pierre Jouannaud,et al.  Rewrite Systems , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[23]  John McCarthy,et al.  Mathematical Theory of Computation , 1991 .

[24]  Pierre Lescanne,et al.  Termination of Rewriting Systems by Polynomial Interpretations and Its Implementation , 1987, Sci. Comput. Program..