A boundary integral formalism for stochastic ray tracing in billiards.

Determining the flow of rays or non-interacting particles driven by a force or velocity field is fundamental to modelling many physical processes. These include particle flows arising in fluid mechanics and ray flows arising in the geometrical optics limit of linear wave equations. In many practical applications, the driving field is not known exactly and the dynamics are determined only up to a degree of uncertainty. This paper presents a boundary integral framework for propagating flows including uncertainties, which is shown to systematically interpolate between a deterministic and a completely random description of the trajectory propagation. A simple but efficient discretisation approach is applied to model uncertain billiard dynamics in an integrable rectangular domain.

[1]  Gary Froyland,et al.  Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach , 2011, SIAM J. Numer. Anal..

[2]  Alain Le Bot,et al.  Energy exchange in uncorrelated ray fields of vibroacoustics , 2006 .

[3]  John A. Hudson Seismic Ray Theory, V Ćerveńiy, Cambridge University Press, 2001, 713 pp, ISBN 0-521-36671-2, Hardback, £90.00 , 2002 .

[4]  Andrea Mazzino,et al.  Active and passive fields face to face , 2004, nlin/0407018.

[5]  E. Altmann,et al.  Faster than expected escape for a class of fully chaotic maps. , 2012, Chaos.

[6]  P. Cvitanović,et al.  How well can one resolve the state space of a chaotic map? , 2009, Physical review letters.

[7]  Robin S. Langley,et al.  Wave intensity analysis of high frequency vibrations , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[8]  Gábor Vattay,et al.  Trace Formulas for Stochastic Evolution Operators: Weak Noise Perturbation Theory , 1998, chao-dyn/9807034.

[9]  Robin S. Langley,et al.  A wave intensity technique for the analysis of high frequency vibrations , 1992 .

[10]  Gregor Tanner,et al.  Dynamical energy analysis on mesh grids: A new tool for describing the vibro-acoustic response of complex mechanical structures , 2014 .

[11]  A. Le Bot,et al.  A vibroacoustic model for high frequency analysis , 1998 .

[12]  Gerhard Keller,et al.  Ruelle?Perron?Frobenius spectrum for Anosov maps , 2002 .

[13]  R. H. Lyon,et al.  Statistical Analysis of Power Injection and Response in Structures and Rooms , 1969 .

[14]  Christopher Bose,et al.  The exact rate of approximation in Ulam's method , 2000 .

[15]  Gregor Tanner,et al.  Dynamical energy analysis—Determining wave energy distributions in vibro-acoustical structures in the high-frequency regime , 2009 .

[16]  Sebastian Reich,et al.  Phase Space Volume Conservation under Space and Time Discretization Schemes for the Shallow-Water Equations , 2010 .

[17]  R. Lyon,et al.  Theory and Application of Statistical Energy Analysis , 2014 .

[18]  Richard H. Lyon,et al.  EVALUATING THE DYNAMICAL RESPONSE VARIABLES , 1994 .

[19]  E. Ott,et al.  Predicting the statistics of wave transport through chaotic cavities by the Random Coupling Model: a review and recent progress , 2013, 1303.6526.

[20]  Thomas M. Antonsen,et al.  Statistical Prediction and Measurement of Induced Voltages on Components Within Complicated Enclosures: A Wave-Chaotic Approach , 2012, IEEE Transactions on Electromagnetic Compatibility.

[21]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[22]  Dj Chappell,et al.  Estimating the validity of statistical energy analysis using dynamical energy analysis: a preliminary study , 2011 .

[23]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[24]  Gregor Tanner,et al.  Discrete flow mapping: transport of phase space densities on triangulated surfaces , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  C. Schütte,et al.  Supplementary Information for “ Constructing the Equilibrium Ensemble of Folding Pathways from Short Off-Equilibrium Simulations ” , 2009 .

[26]  Péter Koltai,et al.  Discretization of the Frobenius-Perron Operator Using a Sparse Haar Tensor Basis: The Sparse Ulam Method , 2009, SIAM J. Numer. Anal..

[27]  Noise Corrections to Stochastic Trace Formulas , 2001, nlin/0101045.

[28]  Gregor Tanner,et al.  Boundary element dynamical energy analysis: a versatile high frequency method for two or three-dimensional problems , 2011 .

[29]  M. Vorländer Simulation of the transient and steady‐state sound propagation in rooms using a new combined ray‐tracing/image‐source algorithm , 1989 .

[30]  Gregor Tanner,et al.  Discrete flow mapping - a mesh based simulation tool for mid-to-high frequency vibro-acoustic excitation of complex automotive structures , 2014 .

[31]  R. LeVeque Numerical methods for conservation laws , 1990 .

[32]  Trace formulae for stochastic evolution operators: smooth conjugation method , 1998, chao-dyn/9811003.

[33]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[34]  G Tanner,et al.  Dynamical energy analysis for built-up acoustic systems at high frequencies. , 2010, The Journal of the Acoustical Society of America.

[35]  Stefano Giani,et al.  Boundary element dynamical energy analysis: A versatile method for solving two or three dimensional wave problems in the high frequency limit , 2012, J. Comput. Phys..

[36]  Jiu Ding,et al.  Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjecture to multi-dimensional transformations , 1996 .

[37]  A. Le Bot ENERGY TRANSFER FOR HIGH FREQUENCIES IN BUILT-UP STRUCTURES , 2002 .

[38]  Gregor Tanner,et al.  Solving the stationary Liouville equation via a boundary element method , 2012, J. Comput. Phys..

[39]  Eduardo G. Altmann,et al.  Leaking chaotic systems , 2012, 1208.0254.

[40]  G. Palla,et al.  Spectrum of stochastic evolution operators: local matrix representation approach. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[41]  V. Červený,et al.  Seismic Ray Theory , 2001, Encyclopedia of Solid Earth Geophysics.