Light‐evoked synaptic activity of retinal ganglion and amacrine cells is regulated in developing mouse retina

Recent studies have shown a continued maturation of visual responsiveness and synaptic activity of retina after eye opening, including the size of receptive fields of retinal ganglion cells (RGCs), light‐evoked synaptic output of RGCs, bipolar cell spontaneous synaptic inputs to RGCs, and the synaptic connections between RGCs and ON and OFF bipolar cells. Light deprivation retarded some of these age‐dependent changes. However, many other functional and morphological features of RGCs are not sensitive to visual experience. To determine whether light‐evoked synaptic responses of RGCs undergo developmental change, we directly examined the light‐evoked synaptic inputs from ON and OFF synaptic pathways to RGCs in developing retinas, and found that both light‐evoked excitatory and inhibitory synaptic currents decreased, but not increased, with age. We also examined the light‐evoked synaptic inputs from ON and OFF synaptic pathways to amacrine cells in developing retinas and found that the light‐evoked synaptic input of amacrine cells is also downregulated in developing mouse retina. Different from the developmental changes of RGC spontaneous synaptic activity, dark rearing has little effect on the developmental changes of light‐evoked synaptic activity of both RGCs and amacrine cells. Therefore, we concluded that the synaptic mechanisms mediating spontaneous and light‐evoked synaptic activity of RGCs and amacrine cells are likely to be different.

[1]  C. Chiao,et al.  Visual experience-independent functional expression of NMDA receptors in the developing rabbit retina. , 2010, Investigative ophthalmology & visual science.

[2]  S. Bisti,et al.  Permanent Functional Reorganization of Retinal Circuits Induced by Early Long-Term Visual Deprivation , 2009, The Journal of Neuroscience.

[3]  R. Wong,et al.  Neurotransmission selectively regulates synapse formation in parallel circuits in vivo , 2009, Nature.

[4]  J. Diamond,et al.  Subunit- and Pathway-Specific Localization of NMDA Receptors and Scaffolding Proteins at Ganglion Cell Synapses in Rat Retina , 2008, The Journal of Neuroscience.

[5]  B. Völgyi,et al.  Tracer coupling patterns of the ganglion cell subtypes in the mouse retina , 2009, The Journal of comparative neurology.

[6]  Chuan-Chin Chiao,et al.  Effect of visual experience on the maturation of ON–OFF direction selective ganglion cells in the rabbit retina , 2008, Vision Research.

[7]  K. L. Myhr,et al.  The development of intrinsic excitability in mouse retinal ganglion cells , 2008, Developmental neurobiology.

[8]  N. Tian,et al.  Glycine receptor‐mediated synaptic transmission regulates the maturation of ganglion cell synaptic connectivity , 2008, The Journal of comparative neurology.

[9]  J. Lichtman,et al.  Development of presynaptic inhibition onto retinal bipolar cell axon terminals is subclass-specific. , 2008, Journal of neurophysiology.

[10]  E. Chichilnisky,et al.  Direction Selectivity in the Retina Is Established Independent of Visual Experience and Cholinergic Retinal Waves , 2008, Neuron.

[11]  S. Bisti,et al.  Long-term dark rearing induces permanent reorganization in retinal circuitry. , 2008, Biochemical and biophysical research communications.

[12]  S. Nawy,et al.  Activity-Dependent Synaptic Plasticity in Retinal Ganglion Cells , 2007, The Journal of Neuroscience.

[13]  N. Grzywacz,et al.  Choline acetyltransferase‐immunoreactive neurons in the retina of normal and dark‐reared turtle , 2007, The Journal of comparative neurology.

[14]  N. Tian,et al.  Retinal ganglion cell dendrites undergo a visual activity‐dependent redistribution after eye opening , 2007, The Journal of comparative neurology.

[15]  R. Masland,et al.  Expression of mRNA for glutamate receptor subunits distinguishes the major classes of retinal neurons, but is less specific for individual cell types , 2007, Molecular vision.

[16]  R. Weiler,et al.  Displaced amacrine cells of the mouse retina , 2007, The Journal of comparative neurology.

[17]  J. Diamond,et al.  Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina , 2006, The Journal of comparative neurology.

[18]  Tricia L. Gibo,et al.  Dark‐rearing‐induced reduction of GABA and GAD and prevention of the effect by BDNF in the mouse retina , 2006, The European journal of neuroscience.

[19]  K. So,et al.  Expression of nicotinamide adenine dinucleotide phosphate-diaphorase in the retina of postnatal golden hamsters deprived of light stimulation , 2006, Neuroscience Letters.

[20]  P. Lukasiewicz,et al.  Presynaptic Inhibition Modulates Spillover, Creating Distinct Dynamic Response Ranges of Sensory Output , 2006, Neuron.

[21]  M. Poo,et al.  Visual stimuli–induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors , 2006, Nature Neuroscience.

[22]  S. Wu,et al.  Development of cholinergic amacrine cells is visual activity‐dependent in the postnatal mouse retina , 2005, The Journal of comparative neurology.

[23]  S. Bisti,et al.  Long-Term Treatment of the Developing Retina with the Metabotropic Glutamate Agonist APB Induces Long-Term Changes in the Stratification of Retinal Ganglion Cell Dendrites , 2005, Developmental Neuroscience.

[24]  S. Schmid,et al.  Developmental plasticity of NMDA receptor function in the retina and the influence of light , 2004, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[26]  H. Ikeda,et al.  Development of neurochemical separation of ON and OFF channels at retinal ganglion cells , 1988, Documenta Ophthalmologica.

[27]  J. H. Reuter The development of the electroretinogram in normal and light-deprived rabbits , 1976, Pflügers Archiv.

[28]  N. Tian,et al.  Light deprivation suppresses the light response of inner retina in both young and adult mouse , 2004, Visual Neuroscience.

[29]  D. Copenhagen,et al.  Visual Stimulation Is Required for Refinement of ON and OFF Pathways in Postnatal Retina , 2003, Neuron.

[30]  N. Cooper,et al.  Developmentally regulated expression of CaMKII and iGluRs in the rat retina. , 2002, Brain research. Developmental brain research.

[31]  Wenzhi Sun,et al.  Large‐scale morphological survey of mouse retinal ganglion cells , 2002, The Journal of comparative neurology.

[32]  J. Diamond,et al.  Synaptically Released Glutamate Activates Extrasynaptic NMDA Receptors on Cells in the Ganglion Cell Layer of Rat Retina , 2002, The Journal of Neuroscience.

[33]  D. Copenhagen,et al.  Visual Deprivation Alters Development of Synaptic Function in Inner Retina after Eye Opening , 2001, Neuron.

[34]  R. Wong,et al.  Mechanisms Underlying Developmental Changes in the Firing Patterns of ON and OFF Retinal Ganglion Cells during Refinement of their Central Projections , 2001, The Journal of Neuroscience.

[35]  N. Cooper,et al.  The modification of NMDA receptors by visual experience in the rat retina is age dependent. , 2001, Brain research. Molecular brain research.

[36]  L. Chalupa,et al.  Unique Functional Properties of On and Off Pathways in the Developing Mammalian Retina , 2001, The Journal of Neuroscience.

[37]  R. Pourcho,et al.  Cellular and subcellular distribution of NMDA receptor subunit NR2b in the retina , 2001, The Journal of comparative neurology.

[38]  M. Constantine‐Paton,et al.  Activity-Dependent Induction of Tonic Calcineurin Activity Mediates a Rapid Developmental Downregulation of NMDA Receptor Currents , 2000, Neuron.

[39]  E. Cohen,et al.  Light-evoked excitatory synaptic currents of X-type retinal ganglion cells. , 2000, Journal of neurophysiology.

[40]  H. Wässle,et al.  Synaptic localization of NMDA receptor subunits in the rat retina , 2000, The Journal of comparative neurology.

[41]  D. Pow,et al.  Developmental expression of excitatory amino acid transporter 5: a photoreceptor and bipolar cell glutamate transporter in rat retina , 2000, Neuroscience Letters.

[42]  Matthew H. Higgs,et al.  Glutamate Uptake Limits Synaptic Excitation of Retinal Ganglion Cells , 1999, The Journal of Neuroscience.

[43]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[44]  M. Tachibana,et al.  Excitatory Synaptic Transmission in the Inner Retina: Paired Recordings of Bipolar Cells and Neurons of the Ganglion Cell Layer , 1998, The Journal of Neuroscience.

[45]  C. Goodman,et al.  Synapse-specific control of synaptic efficacy at the terminals of a single neuron , 1998, Nature.

[46]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[47]  S. Vicini,et al.  Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons , 1998, The Journal of physiology.

[48]  S. Aamodt,et al.  Temporal Correlations between Functional and Molecular Changes in NMDA Receptors and GABA Neurotransmission in the Superior Colliculus , 1997, The Journal of Neuroscience.

[49]  T. Raju,et al.  Levels of dopamine and noradrenaline in the developing retina — effect of light deprivation , 1997, International Journal of Developmental Neuroscience.

[50]  H. Wässle,et al.  Synaptogenesis in the rat retina: subcellular localization of glycine receptors, GABAA receptors, and the anchoring protein gephyrin , 1997, The Journal of comparative neurology.

[51]  H. Monyer,et al.  NR2A Subunit Expression Shortens NMDA Receptor Synaptic Currents in Developing Neocortex , 1997, The Journal of Neuroscience.

[52]  N. Grzywacz,et al.  Influence of spontaneous activity and visual experience on developing retinal receptive fields , 1996, Current Biology.

[53]  D. Copenhagen,et al.  Characterization of spontaneous excitatory synaptic currents in salamander retinal ganglion cells. , 1995, The Journal of physiology.

[54]  H. Wässle,et al.  Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina , 1994, The Journal of comparative neurology.

[55]  D. Copenhagen,et al.  The contribution of NMDA and Non-NMDA receptors to the light-evoked input-output characteristics of retinal ganglion cells , 1993, Neuron.

[56]  J. S. Tootle,et al.  Early postnatal development of visual function in ganglion cells of the cat retina. , 1993, Journal of neurophysiology.

[57]  G. Carmignoto,et al.  Activity-dependent decrease in NMDA receptor responses during development of the visual cortex. , 1992, Science.

[58]  Shaul Hestrin,et al.  Developmental regulation of NMDA receptor-mediated synaptic currents at a central synapse , 1992, Nature.

[59]  A. Spira,et al.  Effects of dark-rearing on the retinal dopaminergic system in the neonatal and postnatal guinea pig. , 1991, Brain research. Developmental brain research.

[60]  K. Fox,et al.  Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex , 1991, Nature.

[61]  W. R. Taylor,et al.  Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. , 1990, The Journal of physiology.

[62]  J. A. Baro,et al.  Electroretinograms and visual evoked potentials in long-term monocularly deprived cats. , 1990, Investigative ophthalmology & visual science.

[63]  S. Massey,et al.  N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. , 1990, Journal of neurophysiology.

[64]  P. Madtes,et al.  GABA — Its role and development in retina , 1987 .

[65]  E. Melamed,et al.  Effect of postnatal light deprivation on the ontogenesis of dopamine neurons in rat retina. , 1986, Brain research.

[66]  H. Ikeda,et al.  Postnatal development of GABA- and glycine-mediated inhibition of feline retinal ganglion cells in the area centralis. , 1985, Brain research.

[67]  P. Lukasiewicz,et al.  Synaptic transmission at N‐methyl‐D‐aspartate receptors in the proximal retina of the mudpuppy. , 1985, The Journal of physiology.

[68]  J. Greiner,et al.  Histogenesis of the ferret retina. , 1981, Experimental eye research.

[69]  L. Fisher Development of retinal synaptic arrays in the inner plexiform layer of dark-reared mice. , 1979, Journal of embryology and experimental morphology.

[70]  L. Fisher Development of synaptic arrays in the inner plexiform layer of neonatal mouse retina , 1979, The Journal of comparative neurology.

[71]  S. Sherman,et al.  Retina X- and Y-cells in monocularly lid-sutured cats: normality of spatial and temporal properties , 1979, Brain Research.

[72]  Rusoff Ac,et al.  Development of receptive-field properties of retinal ganglion cells in kittens. , 1977 .

[73]  M. Dubin,et al.  Development of receptive-field properties of retinal ganglion cells in kittens. , 1977, Journal of neurophysiology.

[74]  A. Hendrickson,et al.  Morphology of the retina and dorsal lateral geniculate nucleus in dark-reared monkeys (Macaca nemestrina) , 1976, Vision Research.

[75]  R. Dacheux,et al.  Developmental characteristics of receptive organization in the isolated retina-eyecup of the rabbit , 1975, Brain Research.

[76]  J. Stone,et al.  Physiological normality of the retinal in visually deprived cats. , 1973, Brain research.

[77]  P. Glow,et al.  Increase in number of synapses in the inner plexiform layer of light deprived rat retinae: Quantitative electron microscopy , 1971, The Journal of comparative neurology.

[78]  D. Hubel,et al.  EFFECTS OF VISUAL DEPRIVATION ON MORPHOLOGY AND PHYSIOLOGY OF CELLS IN THE CATS LATERAL GENICULATE BODY. , 1963, Journal of neurophysiology.