Application of a sensitivity equation method to turbulent flows with heat transfer

This paper presents a continuous sensitivity equation method (SEM) for incompressible turbulent heat transfer. The k–ɛ model of turbulence with wall functions is used to model turbulence. Heat transfer is handled using an eddy conductivity. The SEM formulation accounts for complex parameter dependence and is suitable for a wide range of problems. It is applied to turbulent flow over a heated backward facing step and to turbulent flow over a heated flat plate. Several uses of the SEM are demonstrated: fast computation of nearby flows, identification of key parameters controlling the flow, and uncertainty analysis. Sensitivities are used to cascade input data uncertainties through the CFD code to yield uncertainty estimates of the skin friction and Stanton number. The SEM also provides detailed information about the contribution of each parameter to the global uncertainty.

[1]  Hosni I. Abu-Mulaweh,et al.  Turbulent mixed convection flow over a backward-facing step , 2001 .

[2]  Humberto Contreras,et al.  The stochastic finite-element method , 1980 .

[3]  Dominique Pelletier,et al.  On the judicious use of the k-ε model, wall functions and adaptivity , 2004 .

[4]  Dominique Pelletier,et al.  A GENERAL CONTINUOUS SENSITIVITY EQUATION FORMULATION FOR COMPLEX FLOWS , 2000 .

[5]  Hosni I. Abu-Mulaweh,et al.  Turbulent mixed convection flow over a backward-facing step - the effect of the step heights , 2002 .

[6]  Dominique Pelletier,et al.  Positivity Preservation and Adaptive Solution for the k-? Model of Turbulence , 1998 .

[7]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[8]  D. Pelletier,et al.  A CONTINUOUS SENSITIVITY EQUATION METHOD FOR FLOWS WITH TEMPERATURE DEPENDENT PROPERTIES , 2000 .

[9]  J. Borggaard,et al.  Application of a sensitivity equation method to the k–ε model of turbulence , 2007 .

[10]  P. A. Newman,et al.  Approach for uncertainty propagation and robust design in CFD using sensitivity derivatives , 2001 .

[11]  J. Vogel,et al.  Heat transfer and fluid mechanics measurements in the turbulent reattaching flow behind a backward-facing step , 1984 .

[12]  Brian Launder,et al.  Current capabilities for modelling turbulence in industrial flows , 1991 .

[13]  B. Armaly,et al.  Turbulent natural convection flow over a backward-facing step , 1999 .

[14]  Dominique Pelletier,et al.  Sensitivity and uncertainty analysis for variable property flows , 2001 .

[15]  Dominique Pelletier,et al.  ADAPTIVE COMPUTATIONS OF TURBULENT FORCED CONVECTION , 1998 .

[16]  Stephane Etienne,et al.  Sensitivity and uncertainty analysis for turbulent flows , 2002 .

[17]  Jeff Borggaard A STUDY OF OPTIMAL COOLING STRATEGIES IN THERMAL PROCESSES , 2000 .

[18]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity , 1992 .

[19]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[20]  J. Z. Zhu,et al.  The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique , 1992 .

[21]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[22]  Dominique Pelletier,et al.  Prediction of Turbulent Separated Flow in a Turnaround Duct Using Wall Functions and Adaptivity , 2001 .

[23]  A. Bejan Convection Heat Transfer , 1984 .

[24]  Stephane Etienne,et al.  A General Sensitivity Equation Formulation for Turbulent Heat Transfer , 2003 .