DNP NMR spectroscopy reveals new structures, residues and interactions in wild spider silks.

DNP solid state NMR spectroscopy allows non-targeted analysis of wild spider silk in unprecedented detail at natural abundance, revealing hitherto unreported features across several species. A >50-fold signal enhancement for each silk, enables the detection of novel H-bonding networks and arginine conformations, and the post-translational modified amino acid, hydroxyproline.

[1]  H. Oschkinat,et al.  Essential but sparse collagen hydroxylysyl post-translational modifications detected by DNP NMR. , 2018, Chemical communications.

[2]  M. Duer,et al.  Collagen Structure-Function Relationships from Solid-State NMR Spectroscopy. , 2018, Accounts of chemical research.

[3]  A. V. D. Vaart,et al.  Uncovering the structure-function relationship in spider silk , 2018 .

[4]  P. Martens,et al.  Multiscale mechanisms of nutritionally induced property variation in spider silks , 2018, PloS one.

[5]  D. Hansen,et al.  A 13C-detected 15N double-quantum NMR experiment to probe arginine side-chain guanidinium 15Nη chemical shifts , 2017, Journal of Biomolecular NMR.

[6]  Monu Kaushik,et al.  Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. , 2017, Progress in nuclear magnetic resonance spectroscopy.

[7]  D. Hansen,et al.  Determining rotational dynamics of the guanidino group of arginine side chains in proteins by carbon-detected NMR† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7cc04821a , 2017, Chemical communications.

[8]  M. Pruski,et al.  Natural Abundance 17 O DNP NMR Provides Precise O-H Distances and Insights into the Brønsted Acidity of Heterogeneous Catalysts. , 2017, Angewandte Chemie.

[9]  P. Martens,et al.  Diet-induced co-variation between architectural and physicochemical plasticity in an extended phenotype , 2017, Journal of Experimental Biology.

[10]  T. Blackledge,et al.  Physicochemical Property Variation in Spider Silk: Ecology, Evolution, and Synthetic Production. , 2017, Annual review of entomology.

[11]  A. van der Vaart,et al.  Secondary Structure Adopted by the Gly-Gly-X Repetitive Regions of Dragline Spider Silk , 2016, International journal of molecular sciences.

[12]  P. Martens,et al.  Evidence of Decoupling Protein Structure from Spidroin Expression in Spider Dragline Silks , 2016, International journal of molecular sciences.

[13]  A. Gronenborn,et al.  Dynamic Nuclear Polarization Enhanced MAS NMR Spectroscopy for Structural Analysis of HIV-1 Protein Assemblies. , 2016, The journal of physical chemistry. B.

[14]  C. Wesdemiotis,et al.  Composition and Function of Spider Glues Maintained During the Evolution of Cobwebs. , 2015, Biomacromolecules.

[15]  N. Pugno,et al.  Extreme strength observed in limpet teeth , 2015, Journal of The Royal Society Interface.

[16]  T. Scheibel,et al.  Biomimetic Fibers Made of Recombinant Spidroins with the Same Toughness as Natural Spider Silk , 2015, Advanced materials.

[17]  J. Yarger,et al.  Molecular dynamics of spider dragline silk fiber investigated by 2H MAS NMR. , 2015, Biomacromolecules.

[18]  J. Yarger,et al.  Elucidating proline dynamics in spider dragline silk fibre using 2H-13C HETCOR MAS NMR. , 2014, Chemical communications.

[19]  T. Blackledge,et al.  Direct solvation of glycoproteins by salts in spider silk glues enhances adhesion and helps to explain the evolution of modern spider orb webs. , 2014, Biomacromolecules.

[20]  H. Hansma Atomic Force Microscopy and Spectroscopy of Silk from Spider Draglines, Capture-Web Spirals, and Silkworms , 2014 .

[21]  Tetsuo Asakura,et al.  Elucidating silk structure using solid-state NMR , 2013 .

[22]  Janelle E. Jenkins,et al.  Characterizing the secondary protein structure of black widow dragline silk using solid-state NMR and X-ray diffraction. , 2013, Biomacromolecules.

[23]  Thomas Scheibel,et al.  Dragline, Egg Stalk and Byssus: A Comparison of Outstanding Protein Fibers and Their Potential for Developing New Materials , 2013 .

[24]  J. Yarger,et al.  Determining hydrogen-bond interactions in spider silk with 1H-13C HETCOR fast MAS solid-state NMR and DFT proton chemical shift calculations. , 2013, Chemical communications.

[25]  R. Griffin,et al.  High frequency dynamic nuclear polarization. , 2013, Accounts of chemical research.

[26]  T. Blackledge,et al.  Post-secretion processing influences spider silk performance , 2012, Journal of The Royal Society Interface.

[27]  Janelle E. Jenkins,et al.  X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks. , 2012, Soft matter.

[28]  François Paquet-Mercier,et al.  Structure of silk by raman spectromicroscopy: From the spinning glands to the fibers , 2012, Biopolymers.

[29]  Markus J. Buehler,et al.  Nonlinear material behaviour of spider silk yields robust webs , 2012, Nature.

[30]  R. Lewis,et al.  Elucidating metabolic pathways for amino acid incorporation into dragline spider silk using 13C enrichment and solid state NMR. , 2011, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[31]  Ingi Agnarsson,et al.  Bioprospecting Finds the Toughest Biological Material: Extraordinary Silk from a Giant Riverine Orb Spider , 2010, PloS one.

[32]  Markus J. Buehler,et al.  Atomistic model of the spider silk nanostructure , 2010 .

[33]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[34]  Janelle E. Jenkins,et al.  Quantitative Correlation between the protein primary sequences and secondary structures in spider dragline silks. , 2010, Biomacromolecules.

[35]  Z. Shao,et al.  Animal silks: their structures, properties and artificial production. , 2009, Chemical communications.

[36]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[37]  H. Hansma,et al.  Molecular nanosprings in spider capture-silk threads , 2003, Nature materials.

[38]  B. Meier,et al.  The molecular structure of spider dragline silk: Folding and orientation of the protein backbone , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  R. Lewis,et al.  Extreme Diversity, Conservation, and Convergence of Spider Silk Fibroin Sequences , 2001, Science.

[40]  F. Grosse,et al.  Lessons from nature--protein fibers. , 2000, Journal of biotechnology.

[41]  C. Riekel,et al.  Aspects of X-ray diffraction on single spider fibers. , 1999, International journal of biological macromolecules.

[42]  D. Kaplan Fibrous proteins—silk as a model system , 1998 .

[43]  M B Hinman,et al.  Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. , 1992, The Journal of biological chemistry.

[44]  R. Lewis,et al.  Structure of a protein superfiber: spider dragline silk. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Y. Kuboki,et al.  High-resolution solid-state nuclear magnetic resonance spectra of dentin collagen. , 1990, Biochemical and biophysical research communications.

[46]  A. Pardi,et al.  Hydrogen bond length and proton NMR chemical shifts in proteins , 1983 .