Studies of multi‐start clustering for global optimization

Global/multi-modal optimization problems arise in many engineering applications. Owing to the existence of multiple minima, it is a challenge to solve the multi-modal optimization problem and to identify the global minimum especially if efficiency is a concern. In this paper, variants of the multi-start with clustering strategy are developed and studied for identifying multiple local minima in nonlinear global optimization problems. The study considers the sampling procedure, the use of Hessian information in forming clusters, the technique for cluster analysis and the local search procedure. Variations of multi-start with clustering are applied to 15 multi-modal problems. A comparative study focuses on the overall search effectiveness in terms of the number of local searches performed, local minima found and required function evaluations. The performance of these multi-start clustering algorithms ranges from very efficient to very robust. Copyright © 2002 John Wiley & Sons, Ltd.

[1]  H. Zimmermann Towards global optimization 2: L.C.W. DIXON and G.P. SZEGÖ (eds.) North-Holland, Amsterdam, 1978, viii + 364 pages, US $ 44.50, Dfl. 100,-. , 1979 .

[2]  Quan Zheng,et al.  Integral global minimization: Algorithms, implementations and numerical tests , 1995, J. Glob. Optim..

[3]  A. Sepulveda,et al.  The repulsion algorithm, a new multistart method for global optimization , 1996 .

[4]  Megan Sorenson,et al.  Library , 1958 .

[5]  Jasbir S. Arora,et al.  TWO ALGORITHMS FOR GLOBAL OPTIMIZATION OF GENERAL NLP PROBLEMS , 1996 .

[6]  Alice M. Agogino,et al.  A vector quantization multistart method for global optimization , 1989 .

[7]  David Mautner Himmelblau,et al.  Applied Nonlinear Programming , 1972 .

[8]  Sandro Ridella,et al.  Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithmCorrigenda for this article is available here , 1987, TOMS.

[9]  S. Vavasis COMPLEXITY ISSUES IN GLOBAL OPTIMIZATION: A SURVEY , 1995 .

[10]  Sing-Tze Bow,et al.  Pattern recognition and image preprocessing , 1992 .

[11]  Alexander H. G. Rinnooy Kan,et al.  Stochastic methods for global optimization , 1984 .

[12]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  The Symmetric Rank One Formula and its Application in Discrete Nonlinear Optimization , 1991 .

[14]  G. T. Timmer,et al.  Stochastic global optimization methods part II: Multi level methods , 1987, Math. Program..

[15]  Emile H. L. Aarts,et al.  Global optimization and simulated annealing , 1991, Math. Program..

[16]  K. S. Al-Sultan,et al.  A Hybrid Genetic Algorithm for Nonconvex Function Minimization , 1997, J. Glob. Optim..

[17]  R. Mayne,et al.  An approach to multi‐start clustering for global optimization with non‐linear constraints , 2002 .

[18]  F. Aluffi-Pentini,et al.  Global optimization and stochastic differential equations , 1985 .

[19]  Marco Locatelli,et al.  Relaxing the Assumptions of the Multilevel Single Linkage Algorithm , 1998, J. Glob. Optim..

[20]  G. A. Gabriele,et al.  A Hybrid Variable Metric Update for the Recursive Quadratic Programming Method , 1991 .

[21]  Alice M. Agogino,et al.  Global Optimization Using the Multistart Method , 1993 .