16 nm planar NMOSFET manufacturable within state-of-the-art CMOS process thanks to specific design and optimisation

In nanometer MOSFETs, because of the small channel size, mesoscopic and even quantum effects can come into play. We have fabricated l6 nm NMOS devices featuring I/sub on/=400 /spl mu/A//spl mu/m and I/sub off/=0.8 /spl mu/A//spl mu/m and demonstrate that the FET principle is still confirmed at room temperature. We have deliberately used a non-overlapped SD/gate architecture, showing that, with adapted channel doping, it not only performs equally as well as the overlapped one, but also shows 1000/spl times/ reduced dispersion and is easily manufacturable. Finally, we show that quantization of energy in the channel motivates a study of performance at low temperature, and that the leading effect at low temperature and low voltage is Coulomb blockade.