Abundance and generalisation in mutualistic networks: solving the chicken-and-egg dilemma.

A frequent observation in plant-animal mutualistic networks is that abundant species tend to be more generalised, interacting with a broader range of interaction partners than rare species. Uncovering the causal relationship between abundance and generalisation has been hindered by a chicken-and-egg dilemma: is generalisation a by-product of being abundant, or does high abundance result from generalisation? Here, we analyse a database of plant-pollinator and plant-seed disperser networks, and provide strong evidence that the causal link between abundance and generalisation is uni-directional. Specifically, species appear to be generalists because they are more abundant, but the converse, that is that species become more abundant because they are generalists, is not supported by our analysis. Furthermore, null model analyses suggest that abundant species interact with many other species simply because they are more likely to encounter potential interaction partners.

[1]  C. Fontaine,et al.  Generalist foraging of pollinators: diet expansion at high density , 2008 .

[2]  N. Blüthgen,et al.  Measuring specialization in species interaction networks , 2006, BMC Ecology.

[3]  Michael J. Crawley,et al.  The R book , 2022 .

[4]  Jeff Ollerton,et al.  Plant-pollinator interactions: from specialization to generalization. , 2005 .

[5]  直彦 野間 屋久島の照葉樹林における液果樹種の果実生産数の年変動と,その種内·種間での同調性 , 1996 .

[6]  Diego P. Vázquez,et al.  NULL MODEL ANALYSES OF SPECIALIZATION IN PLANT–POLLINATOR INTERACTIONS , 2003 .

[7]  S. Schreiber,et al.  Why intraspecific trait variation matters in community ecology. , 2011, Trends in ecology & evolution.

[8]  Luis Santamaría,et al.  Linkage Rules for Plant–Pollinator Networks: Trait Complementarity or Exploitation Barriers? , 2007, PLoS biology.

[9]  Pedro Jordano,et al.  El ciclo anual de los Paseriformes frugívoros en el matorral mediterráneo del sur de España: importancia de su invernada y variaciones interanuales , 1985 .

[10]  Michael J. Panik Statistical Inference: A Short Course , 2012 .

[11]  Jeff Ollerton,et al.  The pollination ecology of an assemblage of grassland asclepiads in South Africa. , 2003, Annals of botany.

[12]  Makoto Kato,et al.  Insect-flower Relationship in the Primary Beech Forest of Ashu, Kyoto : An Overview of the Flowering Phenology and the Seasonal Pattern of Insect Visits , 1990 .

[13]  M. Galetti,et al.  Fruit eating by birds in a forest fragment in southeastern Brazil. , 2013 .

[14]  Steward T. A. Pickett,et al.  Ecological Understanding and the Public , 1994 .

[15]  D. W. Snow,et al.  The Feeding Ecology of Tanagers and Honeycreepers in Trinidad , 1971 .

[16]  Luciano Cagnolo,et al.  Evaluating multiple determinants of the structure of plant-animal mutualistic networks. , 2009, Ecology.

[17]  A. F. Motten,et al.  POLLINATION ECOLOGY OF THE SPRING WILDFLOWER COMMUNITY OF A TEMPERATE DECIDUOUS FOREST , 1986 .

[18]  J. Olesen,et al.  Invasion of pollination networks on oceanic islands: importance of invader complexes and endemic super generalists , 2002 .

[19]  Marco A. R. Mello,et al.  Pollination networks of oil-flowers: a tiny world within the smallest of all worlds. , 2009, The Journal of animal ecology.

[20]  Hans-Jürgen Zimmermann,et al.  Fuzzy set theory , 1992 .

[21]  Diego P. Vázquez,et al.  Changes in interaction biodiversity induced by an introduced ungulate , 2003 .

[22]  M. Groom,et al.  Avian fruit preferences across a Puerto Rican forested landscape: pattern consistency and implications for seed removal , 2002, Oecologia.

[23]  Márcio S Araújo,et al.  The ecological causes of individual specialisation. , 2011, Ecology letters.

[24]  J Memmott,et al.  The structure of a plant-pollinator food web. , 1999, Ecology letters.

[25]  Jordi Bascompte,et al.  Missing and forbidden links in mutualistic networks , 2011, Proceedings of the Royal Society B: Biological Sciences.

[26]  John W. Baird THE SELECTION AND USE OF FRUIT BY BIRDS IN AN EASTERN FOREST , 1980 .

[27]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[28]  David W. Inouye,et al.  Pollination biology in the Snowy Mountains of Australia: Comparisons with montane Colorado, USA , 1988 .

[29]  S. Barrett,et al.  The reproductive biology of boreal forest herbs. I. Breeding systems and pollination , 1987 .

[30]  Nico Blüthgen,et al.  Why network analysis is often disconnected from community ecology: A critique and an ecologist's guide , 2010 .

[31]  Jens M. Olesen,et al.  Structure of a plant–flower‐visitor network in the high‐altitude sub‐alpine desert of Tenerife, Canary Islands , 2003 .

[32]  David Mouillot,et al.  Ectoparasitic “Jacks‐of‐All‐Trades”: Relationship between Abundance and Host Specificity in Fleas (Siphonaptera) Parasitic on Small Mammals , 2004, The American Naturalist.

[33]  A. F. Motten Pollination ecology of the spring wildflower community in the deciduous forests of Piedmont, North Carolina , 1982 .

[34]  Monica G. Turner,et al.  Filling key gaps in population and community ecology , 2007 .

[35]  Neal M. Williams,et al.  Species abundance and asymmetric interaction strength in ecological networks , 2007 .

[36]  Bill Shipley,et al.  Cause and Correlation in Biology: A User''s Guide to Path Analysis , 2016 .

[37]  Lynn V. Dicks,et al.  Compartmentalization in plant–insect flower visitor webs , 2002 .

[38]  C. Fontaine Ecology: Abundant equals nested , 2013, Nature.

[39]  D. Schemske,et al.  Flowering Ecology of Some Spring Woodland Herbs , 1978 .

[40]  Bruce M. Beehler,et al.  Frugivory and Polygamy in Birds of Paradise , 1983 .

[41]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[42]  M. Aizen,et al.  Chapter 9 Community-Wide Patterns of Specialization in Plant – Pollinator Interactions Revealed by Null Models , 2004 .

[43]  J. Emlen,et al.  ON THE RELATIONSHIP BETWEEN ABUNDANCE AND DISTRIBUTION OF SPECIES , 2008 .

[44]  Luciano Cagnolo,et al.  Uniting pattern and process in plant-animal mutualistic networks: a review. , 2009, Annals of botany.