Implementation of parallel adders using area efficient quantum dot cellular automata full adder

An area efficient parallel adders using coplanar wire crossover quantum dot cellular automata full adder are presented. The Quantum dot Cellular Automata (QCA) is one of the emerging nano-electronic technologies for the possible alternative to current transistor based technologies, to overcome the scaling limitations of CMOS technology at nano-scale. A novel coplanar wire crossover based full adder is designed using three majority gates and two corner based inverters for the area optimization. The results obtained in the QCA implementation are reduced the area by 11% and QCA cell count by 12% in comparison with the full adder designed in [1]. QCA based parallel adders designed using optimized full adder and functional simulation is carried out using QCA designer software.

[1]  A. Dzurak,et al.  Demonstration of a silicon-based quantum cellular automata cell , 2006 .

[2]  New Decomposition Theorems on Majority Logic for Low-Delay Adder Designs in Quantum Dot Cellular Automata , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[3]  P. D. Tougaw,et al.  A device architecture for computing with quantum dots , 1997, Proc. IEEE.

[4]  Graham A. Jullien,et al.  Performance comparison of quantum-dot cellular automata adders , 2005, 2005 IEEE International Symposium on Circuits and Systems.

[5]  Ismo Hänninen,et al.  Robust Adders Based on Quantum-Dot Cellular Automata , 2007, 2007 IEEE International Conf. on Application-specific Systems, Architectures and Processors (ASAP).

[6]  Yong-bin Kim,et al.  Challenges for Nanoscale MOSFETs and Emerging Nanoelectronics , 2010 .

[7]  Craig S. Lent,et al.  High-speed metallic quantum-dot cellular automata , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[8]  B. Bishnoi,et al.  Ripple carry adder using five input majority gates , 2012, 2012 IEEE International Conference on Electron Devices and Solid State Circuit (EDSSC).

[9]  P. D. Tougaw,et al.  Lines of interacting quantum‐dot cells: A binary wire , 1993 .

[10]  Milad Sangsefidi,et al.  Coplanar Full Adder in Quantum-Dot Cellular Automata via Clock-Zone-Based Crossover , 2015, IEEE Transactions on Nanotechnology.

[11]  Craig S. Lent,et al.  Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics , 2007 .

[12]  E. Swartzlander,et al.  Adder Designs and Analyses for Quantum-Dot Cellular Automata , 2007, IEEE Transactions on Nanotechnology.

[13]  M. Balakrishnan,et al.  Coplanar QCA crossovers , 2009 .

[14]  Kee-Young Yoo,et al.  Wire-Crossing Technique on Quantum-Dot Cellular Automata , 2013 .

[15]  T.J. Dysart,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2001 .

[16]  Earl E. Swartzlander,et al.  Computer arithmetic implemented with QCA: A progress report , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[17]  Earl E. Swartzlander,et al.  Adder and Multiplier Design in Quantum-Dot Cellular Automata , 2009, IEEE Transactions on Computers.

[18]  Craig S. Lent,et al.  Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata , 2010 .

[19]  K. Sridharan,et al.  Low Complexity Design of Ripple Carry and Brent–Kung Adders in QCA , 2012, IEEE Transactions on Nanotechnology.

[20]  Mehdi Baradaran Tahoori,et al.  Defect characterization for scaling of QCA devices [quantum dot cellular automata ] , 2004, 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings..

[21]  Alexander Yu. Vlasov,et al.  On Quantum Cellular Automata , 2004, ArXiv.

[22]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[23]  Wei Wang,et al.  Quantum-dot cellular automata adders , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..